File size: 16,407 Bytes
adcbc9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
r'''#===================================================================================================================
#
# MIDI to Colab AUdio Python Module
#
# Converts any MIDI file to raw audio which is compatible
# with Google Colab or HUgging Face Gradio
#
# Version 2.0
#
# Includes full source code of MIDI and pyfluidsynth
#
# Original source code for all modules was retrieved on 07/31/2025
#
# Project Los Angeles
# Tegridy Code 2025
#
#===================================================================================================================
#
# Critical dependencies
#
# pip install numpy
# sudo apt install fluidsynth
#
#===================================================================================================================
#
# Example usage:
#
# from midi_to_colab_audio import midi_to_colab_audio
# from IPython.display import display, Audio
#
# raw_audio = midi_to_colab_audio('/content/input.mid')
#
# display(Audio(raw_audio, rate=16000, normalize=False))
#
#===================================================================================================================
'''
import fluidsynth
from src import MIDI
#===============================================================================
import numpy as np
import wave
#===============================================================================
def normalize_audio(audio: np.ndarray,
method: str = 'peak',
target_level_db: float = -1.0,
per_channel: bool = False,
eps: float = 1e-9
) -> np.ndarray:
"""
Normalize audio to a target dBFS level.
Parameters
----------
audio : np.ndarray
Float-valued array in range [-1, 1] with shape (channels, samples)
or (samples,) for mono.
method : {'peak', 'rms'}
- 'peak': scale so that max(|audio|) = target_level_lin
- 'rms' : scale so that RMS(audio) = target_level_lin
target_level_db : float
Desired output level, in dBFS (0 dBFS = max digital full scale).
e.g. -1.0 dBFS means ~0.8913 linear gain.
per_channel : bool
If True, normalize each channel independently. Otherwise, use a
global measure across all channels.
eps : float
Small constant to avoid division by zero.
Returns
-------
normalized : np.ndarray
Audio array of same shape, scaled so that levels meet the target.
"""
# Convert target dB to linear gain
target_lin = 10 ** (target_level_db / 20.0)
# Ensure audio is float
audio = audio.astype(np.float32)
# if mono, make it (1, N)
if audio.ndim == 1:
audio = audio[np.newaxis, :]
# Choose measurement axis
axis = 1 if per_channel else None
if method == 'peak':
# Compute peak per channel or global
peak = np.max(np.abs(audio), axis=axis, keepdims=True)
peak = np.maximum(peak, eps)
scales = target_lin / peak
elif method == 'rms':
# Compute RMS per channel or global
rms = np.sqrt(np.mean(audio ** 2, axis=axis, keepdims=True))
rms = np.maximum(rms, eps)
scales = target_lin / rms
else:
raise ValueError(f"Unsupported method '{method}'; choose 'peak' or 'rms'.")
# Broadcast scales back to audio shape
normalized = audio * scales
# Clip just in case of rounding
return np.clip(normalized, -1.0, 1.0)
#===============================================================================
def midi_opus_to_colab_audio(midi_opus,
soundfont_path='/usr/share/sounds/sf2/FluidR3_GM.sf2',
sample_rate=16000, # 44100
volume_level_db=-1,
trim_silence=True,
silence_threshold=0.1,
output_for_gradio=False,
write_audio_to_WAV=''
):
if midi_opus[1]:
ticks_per_beat, *tracks = midi_opus
if not tracks:
return None
# Flatten & convert delta-times to absolute-time
events = []
for track in tracks:
abs_t = 0
for name, dt, *data in track:
abs_t += dt
events.append([name, abs_t, *data])
events.sort(key=lambda e: e[1])
# Setup FluidSynth
fl = fluidsynth.Synth(samplerate=float(sample_rate))
sfid = fl.sfload(soundfont_path)
for chan in range(16):
# channel 9 = percussion GM bank 128
fl.program_select(chan, sfid, 128 if chan == 9 else 0, 0)
# Playback vars
tempo = int((60 / 120) * 1e6) # default 120bpm
last_t = 0
ss = np.empty((0, 2), dtype=np.int16)
for name, cur_t, *data in events:
# compute how many samples have passed since the last event
delta_ticks = cur_t - last_t
last_t = cur_t
dt_seconds = (delta_ticks / ticks_per_beat) * (tempo / 1e6)
sample_len = int(dt_seconds * sample_rate)
if sample_len > 0:
buf = fl.get_samples(sample_len).reshape(-1, 2)
ss = np.concatenate([ss, buf], axis=0)
# Dispatch every known event
if name == "note_on" and data[2] > 0:
chan, note, vel = data
fl.noteon(chan, note, vel)
elif name == "note_off" or (name == "note_on" and data[2] == 0):
chan, note = data[:2]
fl.noteoff(chan, note)
elif name == "patch_change":
chan, patch = data[:2]
bank = 128 if chan == 9 else 0
fl.program_select(chan, sfid, bank, patch)
elif name == "control_change":
chan, ctrl, val = data[:3]
fl.cc(chan, ctrl, val)
elif name == "key_after_touch":
chan, note, vel = data
fl.key_pressure(chan, note, vel)
elif name == "channel_after_touch":
chan, vel = data
fl.channel_pressure(chan, vel)
elif name == "pitch_wheel_change":
chan, wheel = data
fl.pitch_bend(chan, wheel)
elif name == "song_position":
# song_pos = data[0]; # often not needed for playback
pass
elif name == "song_select":
# song_number = data[0]
pass
elif name == "tune_request":
# typically resets tuning; FS handles internally
pass
elif name in ("sysex_f0", "sysex_f7"):
raw_bytes = data[0]
fl.sysex(raw_bytes)
# Meta events & others—no direct audio effect, so we skip or log
elif name in (
"set_tempo", # handled below
"end_track",
"text_event", "text_event_08", "text_event_09", "text_event_0a",
"text_event_0b", "text_event_0c", "text_event_0d", "text_event_0e", "text_event_0f",
"copyright_text_event", "track_name", "instrument_name",
"lyric", "marker", "cue_point",
"smpte_offset", "time_signature", "key_signature",
"sequencer_specific", "raw_meta_event"
):
if name == "set_tempo":
tempo = data[0]
# else: skip all other meta & text; you could hook in logging here
continue
else:
# unknown event type
continue
# Cleanup synth
fl.delete()
if ss.size:
maxv = np.abs(ss).max()
if maxv:
ss = (ss / maxv) * np.iinfo(np.int16).max
ss = ss.astype(np.int16)
# Optional trimming of trailing silence
if trim_silence and ss.size:
thresh = np.std(np.abs(ss)) * silence_threshold
idx = np.where(np.abs(ss) > thresh)[0]
if idx.size:
ss = ss[: idx[-1] + 1]
# For Gradio you might want raw int16 PCM
if output_for_gradio:
return ss
# Swap to (channels, samples) and normalize for playback
ss = ss.T
raw_audio = normalize_audio(ss, target_level_db=volume_level_db)
# Optionally write WAV to disk
if write_audio_to_WAV:
wav_name = midi_file.rsplit('.', 1)[0] + '.wav'
pcm = np.int16(raw_audio.T / np.max(np.abs(raw_audio)) * 32767)
with wave.open(wav_name, 'wb') as wf:
wf.setframerate(sample_rate)
wf.setsampwidth(2)
wf.setnchannels(pcm.shape[1])
wf.writeframes(pcm.tobytes())
return raw_audio
else:
return None
#===============================================================================
def midi_to_colab_audio(midi_file,
soundfont_path='/usr/share/sounds/sf2/FluidR3_GM.sf2',
sample_rate=16000,
volume_level_db=-1,
trim_silence=True,
silence_threshold=0.1,
output_for_gradio=False,
write_audio_to_WAV=False
):
"""
Returns raw audio to pass to IPython.disaply.Audio func
Example usage:
from IPython.display import Audio
display(Audio(raw_audio, rate=16000, normalize=False))
"""
# Check if midi_input is a path (string) or file content (bytes)
if isinstance(midi_file, str):
# It's a file path, open and read it.
try:
with open(midi_file, 'rb') as f:
midi_bytes = f.read()
except FileNotFoundError:
print(f"Error: Could not find or open the file at {midi_file}")
return None # Or handle the error appropriately
elif isinstance(midi_file, bytes):
# It's already the file content.
midi_bytes = midi_file
else:
raise TypeError("midi_input must be a file path (str) or file content (bytes)")
# Read and decode MIDI → opus event list from bytes
ticks_per_beat, *tracks = MIDI.midi2opus(midi_bytes)
if not tracks:
return None
# Flatten & convert delta-times to absolute-time
events = []
for track in tracks:
abs_t = 0
for name, dt, *data in track:
abs_t += dt
events.append([name, abs_t, *data])
events.sort(key=lambda e: e[1])
# Setup FluidSynth
fl = fluidsynth.Synth(samplerate=float(sample_rate))
sfid = fl.sfload(soundfont_path)
for chan in range(16):
# channel 9 = percussion GM bank 128
fl.program_select(chan, sfid, 128 if chan == 9 else 0, 0)
# Playback vars
tempo = int((60 / 120) * 1e6) # default 120bpm
last_t = 0
# Initialize a Python list to store audio chunks
audio_chunks = []
for name, cur_t, *data in events:
# compute how many samples have passed since the last event
delta_ticks = cur_t - last_t
last_t = cur_t
dt_seconds = (delta_ticks / ticks_per_beat) * (tempo / 1e6)
sample_len = int(dt_seconds * sample_rate)
if sample_len > 0:
buf = fl.get_samples(sample_len).reshape(-1, 2)
# Append the audio chunk to the list
audio_chunks.append(buf)
# Dispatch every known event
if name == "note_on" and data[2] > 0:
chan, note, vel = data
fl.noteon(chan, note, vel)
elif name == "note_off" or (name == "note_on" and data[2] == 0):
chan, note = data[:2]
fl.noteoff(chan, note)
elif name == "patch_change":
chan, patch = data[:2]
bank = 128 if chan == 9 else 0
fl.program_select(chan, sfid, bank, patch)
elif name == "control_change":
chan, ctrl, val = data[:3]
fl.cc(chan, ctrl, val)
elif name == "key_after_touch":
chan, note, vel = data
fl.key_pressure(chan, note, vel)
elif name == "channel_after_touch":
chan, vel = data
fl.channel_pressure(chan, vel)
elif name == "pitch_wheel_change":
chan, wheel = data
fl.pitch_bend(chan, wheel)
elif name == "song_position":
# song_pos = data[0]; # often not needed for playback
pass
elif name == "song_select":
# song_number = data[0]
pass
elif name == "tune_request":
# typically resets tuning; FS handles internally
pass
elif name in ("sysex_f0", "sysex_f7"):
raw_bytes = data[0]
fl.sysex(raw_bytes)
# Meta events & others—no direct audio effect, so we skip or log
elif name in (
"set_tempo", # handled below
"end_track",
"text_event", "text_event_08", "text_event_09", "text_event_0a",
"text_event_0b", "text_event_0c", "text_event_0d", "text_event_0e", "text_event_0f",
"copyright_text_event", "track_name", "instrument_name",
"lyric", "marker", "cue_point",
"smpte_offset", "time_signature", "key_signature",
"sequencer_specific", "raw_meta_event"
):
if name == "set_tempo":
tempo = data[0]
# else: skip all other meta & text; you could hook in logging here
continue
else:
# unknown event type
continue
# This captures the sound of the last notes, allowing them to decay naturally.
# We render an extra 2 seconds of audio. A shorter time like 1 second might be sufficient.
tail_len_seconds = 2
tail_buf = fl.get_samples(int(sample_rate * tail_len_seconds)).reshape(-1, 2)
audio_chunks.append(tail_buf)
# Cleanup synth
fl.delete()
# After the loop finishes, concatenate all audio chunks in a single operation
if not audio_chunks:
return None # No audio was generated
ss = np.concatenate(audio_chunks, axis=0)
# Optimized silence trimming logic
if trim_silence and ss.size:
# Using a fixed amplitude threshold based on the data type's max value.
# This is more robust than using standard deviation for trimming the tail.
dtype_max = np.iinfo(ss.dtype).max
fixed_threshold = int(dtype_max * 0.005) # 0.5% of max amplitude
# Find the first and last samples exceeding the threshold.
indices = np.where(np.abs(ss) > fixed_threshold)[0]
if indices.size > 0:
# We trim from the start as well in case of leading silence
first_idx = indices[0]
last_idx = indices[-1]
ss = ss[first_idx : last_idx + 1]
else:
# If it's all silence, return an empty array.
ss = np.empty((0, 2), dtype=ss.dtype)
if ss.size:
maxv = np.abs(ss).max()
if maxv:
ss = (ss / maxv) * np.iinfo(np.int16).max
ss = ss.astype(np.int16)
# For Gradio you might want raw int16 PCM
if output_for_gradio:
return ss
# Swap to (channels, samples) and normalize for playback
ss = ss.T
raw_audio = normalize_audio(ss, target_level_db=volume_level_db)
# Optionally write WAV to disk
if write_audio_to_WAV and isinstance(midi_file, str):
wav_name = midi_file.rsplit('.', 1)[0] + '.wav'
# Note: raw_audio is float, needs conversion back to int16 for WAV format.
if np.max(np.abs(raw_audio)) > 0:
pcm = np.int16(raw_audio.T / np.max(np.abs(raw_audio)) * 32767)
else:
pcm = np.int16(raw_audio.T * 32767)
with wave.open(wav_name, 'wb') as wf:
wf.setframerate(sample_rate)
wf.setsampwidth(2)
wf.setnchannels(pcm.shape[1])
wf.writeframes(pcm.tobytes())
return raw_audio
#=================================================================================================================== |