|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
import re |
|
import os |
|
import time |
|
import struct |
|
import subprocess |
|
import matplotlib.font_manager as fm |
|
from typing import Tuple, List, Dict |
|
from mutagen.flac import FLAC |
|
from moviepy import CompositeVideoClip, TextClip, VideoClip, AudioFileClip |
|
|
|
|
|
def get_font_display_name(font_path: str) -> Tuple[str, str]: |
|
""" |
|
A robust TTF/TTC parser based on the user's final design. |
|
It reads the 'name' table to find the localized "Full Font Name" (nameID=4). |
|
Returns a tuple of (display_name, language_tag {'zh'/'ja'/'ko'/'en'/'other'}). |
|
""" |
|
def decode_name_string(name_bytes: bytes, platform_id: int, encoding_id: int) -> str: |
|
"""Decodes the name string based on platform and encoding IDs.""" |
|
try: |
|
if platform_id == 3 and encoding_id in [1, 10]: |
|
return name_bytes.decode('utf_16_be').strip('\x00') |
|
elif platform_id == 1 and encoding_id == 0: |
|
return name_bytes.decode('mac_roman').strip('\x00') |
|
elif platform_id == 0: |
|
return name_bytes.decode('utf_16_be').strip('\x00') |
|
else: |
|
return name_bytes.decode('utf_8', errors='ignore').strip('\x00') |
|
except Exception: |
|
return None |
|
|
|
try: |
|
with open(font_path, 'rb') as f: data = f.read() |
|
def read_ushort(offset): return struct.unpack('>H', data[offset:offset+2])[0] |
|
def read_ulong(offset): return struct.unpack('>I', data[offset:offset+4])[0] |
|
|
|
font_offsets = [0] |
|
|
|
if data[:4] == b'ttcf': |
|
num_fonts = read_ulong(8) |
|
font_offsets = [read_ulong(12 + i * 4) for i in range(num_fonts)] |
|
|
|
|
|
font_offset = font_offsets[0] |
|
|
|
num_tables = read_ushort(font_offset + 4) |
|
name_table_offset = -1 |
|
|
|
for i in range(num_tables): |
|
entry_offset = font_offset + 12 + i * 16 |
|
tag = data[entry_offset:entry_offset+4] |
|
if tag == b'name': |
|
name_table_offset = read_ulong(entry_offset + 8); break |
|
|
|
if name_table_offset == -1: return None, None |
|
|
|
count, string_offset = read_ushort(name_table_offset + 2), read_ushort(name_table_offset + 4) |
|
name_candidates = {} |
|
|
|
for i in range(count): |
|
rec_offset = name_table_offset + 6 + i * 12 |
|
platform_id, encoding_id, language_id, name_id, length, offset = struct.unpack('>HHHHHH', data[rec_offset:rec_offset+12]) |
|
|
|
if name_id == 4: |
|
string_pos = name_table_offset + string_offset + offset |
|
value = decode_name_string(data[string_pos : string_pos + length], platform_id, encoding_id) |
|
|
|
if value: |
|
|
|
if language_id in [1028, 2052, 3076, 4100, 5124]: name_candidates["zh"] = value |
|
elif language_id == 1041: name_candidates["ja"] = value |
|
elif language_id == 1042: name_candidates["ko"] = value |
|
elif language_id in [1033, 0]: name_candidates["en"] = value |
|
else: |
|
if "other" not in name_candidates: name_candidates["other"] = value |
|
|
|
|
|
if name_candidates.get("zh"): return name_candidates.get("zh"), "zh" |
|
if name_candidates.get("ja"): return name_candidates.get("ja"), "ja" |
|
if name_candidates.get("ko"): return name_candidates.get("ko"), "ko" |
|
if name_candidates.get("other"): return name_candidates.get("other"), "other" |
|
if name_candidates.get("en"): return name_candidates.get("en"), "en" |
|
return None, None |
|
|
|
except Exception: |
|
return None, None |
|
|
|
def get_font_data() -> Tuple[Dict[str, str], List[str]]: |
|
""" |
|
Scans system fonts, parses their display names, and returns a sorted list |
|
with a corresponding name-to-path map. |
|
""" |
|
font_map = {} |
|
found_names = [] |
|
|
|
|
|
ttf_files = fm.findSystemFonts(fontpaths=None, fontext='ttf') |
|
ttc_files = fm.findSystemFonts(fontpaths=None, fontext='ttc') |
|
all_font_files = list(set(ttf_files + ttc_files)) |
|
|
|
for path in all_font_files: |
|
display_name, lang_tag = get_font_display_name(path) |
|
is_fallback = display_name is None |
|
|
|
if is_fallback: |
|
|
|
display_name = os.path.splitext(os.path.basename(path))[0].replace('-', ' ').replace('_', ' ').title() |
|
lang_tag = 'fallback' |
|
|
|
if display_name and display_name not in font_map: |
|
font_map[display_name] = path |
|
found_names.append((display_name, is_fallback, lang_tag)) |
|
|
|
|
|
sort_order = {'zh': 0, 'ja': 1, 'ko': 2, 'en': 3, 'other': 4, 'fallback': 5} |
|
|
|
|
|
found_names.sort(key=lambda x: (sort_order.get(x[2], 99), x[0])) |
|
|
|
sorted_display_names = [name for name, _, _ in found_names] |
|
return font_map, sorted_display_names |
|
|
|
print("Scanning system fonts and parsing names...") |
|
SYSTEM_FONTS_MAP, FONT_DISPLAY_NAMES = get_font_data() |
|
print(f"Scan complete. Found {len(FONT_DISPLAY_NAMES)} available fonts.") |
|
|
|
|
|
|
|
def cue_time_to_seconds(time_str: str) -> float: |
|
try: |
|
minutes, seconds, frames = map(int, time_str.split(':')) |
|
return minutes * 60 + seconds + frames / 75.0 |
|
except ValueError: |
|
return 0.0 |
|
|
|
def parse_cue_sheet_manually(cue_data: str) -> List[Dict[str, any]]: |
|
tracks = [] |
|
current_track_info = None |
|
for line in cue_data.splitlines(): |
|
line = line.strip() |
|
if line.upper().startswith('TRACK'): |
|
if current_track_info and 'title' in current_track_info and 'start_time' in current_track_info: |
|
tracks.append(current_track_info) |
|
current_track_info = {} |
|
continue |
|
if current_track_info is not None: |
|
title_match = re.search(r'TITLE\s+"(.*?)"', line, re.IGNORECASE) |
|
if title_match: |
|
current_track_info['title'] = title_match.group(1) |
|
continue |
|
index_match = re.search(r'INDEX\s+01\s+(\d{2}:\d{2}:\d{2})', line, re.IGNORECASE) |
|
if index_match: |
|
current_track_info['start_time'] = cue_time_to_seconds(index_match.group(1)) |
|
continue |
|
if current_track_info and 'title' in current_track_info and 'start_time' in current_track_info: |
|
tracks.append(current_track_info) |
|
return tracks |
|
|
|
|
|
|
|
def increase_video_framerate(input_path: str, output_path: str, target_fps: int = 24): |
|
""" |
|
Uses FFmpeg to increase the video's framerate without re-encoding. |
|
This is extremely fast as it only copies streams and changes metadata. |
|
|
|
Args: |
|
input_path (str): Path to the low-framerate video file. |
|
output_path (str): Path for the final, high-framerate video file. |
|
target_fps (int): The desired output framerate. |
|
""" |
|
print(f"Increasing framerate of '{input_path}' to {target_fps} FPS...") |
|
|
|
|
|
command = [ |
|
'ffmpeg', |
|
'-y', |
|
'-i', input_path, |
|
'-map', '0', |
|
'-vf', 'fps=24', |
|
'-c:v', 'libx264', |
|
'-preset', 'fast', |
|
'-crf', '18', |
|
'-c:a', 'copy', |
|
output_path |
|
] |
|
|
|
try: |
|
|
|
|
|
result = subprocess.run(command, check=True, capture_output=True, text=True) |
|
print("Framerate increase successful.") |
|
except FileNotFoundError: |
|
|
|
raise gr.Error("FFmpeg not found. Please ensure FFmpeg is installed and accessible in your system's PATH.") |
|
except subprocess.CalledProcessError as e: |
|
|
|
print("FFmpeg error output:\n", e.stderr) |
|
raise gr.Error(f"FFmpeg failed to increase the framerate. See console for details. Error: {e.stderr}") |
|
|
|
|
|
|
|
def process_audio_to_video( |
|
audio_path: str, spec_fg_color: str, spec_bg_color: str, |
|
font_name: str, font_size: int, font_color: str, |
|
font_bg_color: str, font_bg_alpha: float, |
|
pos_h: str, pos_v: str |
|
) -> str: |
|
if not audio_path: raise gr.Error("Please upload an audio file first.") |
|
if not font_name: raise gr.Error("Please select a font from the list.") |
|
|
|
|
|
timestamp = int(time.time()) |
|
temp_fps1_path = f"temp_{timestamp}_fps1.mp4" |
|
final_output_path = f"final_video_{timestamp}_fps24.mp4" |
|
|
|
WIDTH, HEIGHT, RENDER_FPS = 1280, 720, 1 |
|
PLAYBACK_FPS = 24 |
|
|
|
|
|
def parse_color_to_rgb(color_str: str) -> Tuple[int, int, int]: |
|
""" |
|
Parses a color string which can be in hex format (#RRGGBB) or |
|
rgb format (e.g., "rgb(255, 128, 0)"). |
|
Returns a tuple of (R, G, B). |
|
""" |
|
color_str = color_str.strip() |
|
if color_str.startswith('#'): |
|
|
|
hex_val = color_str.lstrip('#') |
|
if len(hex_val) == 3: |
|
hex_val = "".join([c*2 for c in hex_val]) |
|
return tuple(int(hex_val[i:i+2], 16) for i in (0, 2, 4)) |
|
elif color_str.startswith('rgb'): |
|
|
|
try: |
|
numbers = re.findall(r'\d+', color_str) |
|
return tuple(int(n) for n in numbers[:3]) |
|
except (ValueError, IndexError): |
|
raise ValueError(f"Could not parse rgb color string: {color_str}") |
|
else: |
|
raise ValueError(f"Unknown color format: {color_str}") |
|
|
|
|
|
fg_rgb, bg_rgb = parse_color_to_rgb(spec_fg_color), parse_color_to_rgb(spec_bg_color) |
|
grid_rgb = tuple(min(c + 40, 255) for c in bg_rgb) |
|
|
|
|
|
try: |
|
y, sr = librosa.load(audio_path, sr=None, mono=True) |
|
duration = librosa.get_duration(y=y, sr=sr) |
|
|
|
|
|
N_FFT, HOP_LENGTH, N_BANDS = 2048, 512, 32 |
|
MIN_DB, MAX_DB = -80.0, 0.0 |
|
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=N_BANDS, fmax=sr/2) |
|
S_mel_db = librosa.power_to_db(S_mel, ref=np.max) |
|
|
|
|
|
def frame_generator(t): |
|
frame = np.full((HEIGHT, WIDTH, 3), bg_rgb, dtype=np.uint8) |
|
for i in range(1, 9): |
|
y_pos = int(i * (HEIGHT / 9)); frame[y_pos-1:y_pos, :] = grid_rgb |
|
time_idx = int((t / duration) * (S_mel_db.shape[1] - 1)) |
|
bar_width = WIDTH / N_BANDS |
|
for i in range(N_BANDS): |
|
energy_db = S_mel_db[i, time_idx] |
|
norm_height = np.clip((energy_db - MIN_DB) / (MAX_DB - MIN_DB), 0, 1) |
|
bar_height = int(norm_height * HEIGHT) |
|
if bar_height < 1: continue |
|
x_start, x_end = int(i * bar_width), int((i + 1) * bar_width - 2) |
|
y_start = HEIGHT - bar_height |
|
for k in range(bar_height): |
|
y_pos, ratio = y_start + k, k / bar_height |
|
r, g, b = (int(c1 * (1-ratio) + c2 * ratio) for c1, c2 in zip(fg_rgb, bg_rgb)) |
|
frame[y_pos, x_start:x_end] = (r, g, b) |
|
return frame |
|
|
|
video_clip = VideoClip(frame_function=frame_generator, duration=duration) |
|
audio_clip = AudioFileClip(audio_path) |
|
|
|
|
|
text_clips = [] |
|
tracks = [] |
|
if audio_path.lower().endswith('.flac'): |
|
try: |
|
audio = FLAC(audio_path); tracks = parse_cue_sheet_manually(audio.tags['cuesheet'][0]) |
|
print(f"Successfully parsed {len(tracks)} tracks from CUE sheet...") |
|
except Exception as e: |
|
print(f"Warning: Could not read or parse CUE sheet: {e}") |
|
|
|
if tracks: |
|
font_path = SYSTEM_FONTS_MAP.get(font_name) |
|
if not font_path: raise gr.Error(f"Font path for '{font_name}' not found!") |
|
|
|
|
|
font_bg_rgb = parse_color_to_rgb(font_bg_color) |
|
font_bg_rgba = (*font_bg_rgb, int(font_bg_alpha * 255)) |
|
|
|
position = (pos_h.lower(), pos_v.lower()) |
|
|
|
print(f"Using font: {font_name}, Size: {font_size}, Position: {position}") |
|
|
|
for i, track in enumerate(tracks): |
|
start_time = track.get('start_time', 0) |
|
title, end_time = track.get('title', 'Unknown Track'), tracks[i+1].get('start_time', duration) if i + 1 < len(tracks) else duration |
|
text_duration = end_time - start_time |
|
if text_duration <= 0: continue |
|
|
|
|
|
txt_clip = (TextClip(text=f"{i+1}. {title}", font_size=font_size, color=font_color, font=font_path, bg_color=font_bg_rgba) |
|
.with_position(position) |
|
.with_duration(text_duration) |
|
.with_start(start_time)) |
|
text_clips.append(txt_clip) |
|
|
|
final_clip = CompositeVideoClip([video_clip] + text_clips).with_audio(audio_clip) |
|
|
|
|
|
print(f"Step 1/2: Rendering base video at {RENDER_FPS} FPS...") |
|
try: |
|
|
|
print("Attempting to copy audio stream directly...") |
|
final_clip.write_videofile( |
|
temp_fps1_path, codec="libx264", audio_codec="copy", fps=RENDER_FPS, |
|
logger='bar', threads=os.cpu_count(), preset='ultrafast' |
|
) |
|
print("Audio stream successfully copied!") |
|
except Exception: |
|
|
|
print("Direct audio copy failed, falling back to AAC encoding...") |
|
final_clip.write_videofile( |
|
temp_fps1_path, codec="libx264", audio_codec="aac", fps=RENDER_FPS, |
|
logger='bar', threads=os.cpu_count(), preset='ultrafast' |
|
) |
|
print("AAC audio encoding complete.") |
|
|
|
final_clip.close() |
|
|
|
|
|
print(f"\nStep 2/2: Remuxing video to {PLAYBACK_FPS} FPS...") |
|
increase_video_framerate(temp_fps1_path, final_output_path, target_fps=PLAYBACK_FPS) |
|
|
|
return final_output_path |
|
|
|
except Exception as e: |
|
|
|
raise e |
|
finally: |
|
|
|
if os.path.exists(temp_fps1_path): |
|
print(f"Cleaning up temporary file: {temp_fps1_path}") |
|
os.remove(temp_fps1_path) |
|
|
|
|
|
with gr.Blocks(title="Spectrogram Video Generator") as iface: |
|
gr.Markdown("# Spectrogram Video Generator") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
audio_input = gr.Audio(type="filepath", label="Upload Audio File") |
|
|
|
with gr.Accordion("Visualizer Options", open=True): |
|
fg_color = gr.ColorPicker(value="#71808c", label="Spectrogram Bar Top Color") |
|
bg_color = gr.ColorPicker(value="#2C3E50", label="Background Color") |
|
|
|
with gr.Accordion("Text Overlay Options", open=True): |
|
|
|
|
|
gr.Markdown( |
|
"**Note:** These options only take effect if the input audio file has an embedded CUE sheet." |
|
) |
|
gr.Markdown("---") |
|
|
|
|
|
gr.Markdown("If your CUE sheet contains non-English characters, please select a compatible font.") |
|
default_font = "Microsoft JhengHei" if "Microsoft JhengHei" in FONT_DISPLAY_NAMES else ("Arial" if "Arial" in FONT_DISPLAY_NAMES else (FONT_DISPLAY_NAMES[0] if FONT_DISPLAY_NAMES else None)) |
|
font_name_dd = gr.Dropdown(choices=FONT_DISPLAY_NAMES, value=default_font, label="Font Family") |
|
|
|
with gr.Row(): |
|
font_size_slider = gr.Slider(minimum=12, maximum=128, value=40, step=1, label="Font Size") |
|
font_color_picker = gr.ColorPicker(value="#FFFFFF", label="Font Color") |
|
|
|
with gr.Row(): |
|
font_bg_color_picker = gr.ColorPicker(value="#000000", label="Text BG Color") |
|
font_bg_alpha_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.6, step=0.05, label="Text BG Opacity") |
|
|
|
gr.Markdown("Text Position") |
|
with gr.Row(): |
|
pos_h_radio = gr.Radio(["left", "center", "right"], value="center", label="Horizontal Align") |
|
pos_v_radio = gr.Radio(["top", "center", "bottom"], value="bottom", label="Vertical Align") |
|
|
|
submit_btn = gr.Button("Generate Video", variant="primary") |
|
|
|
with gr.Column(scale=2): |
|
video_output = gr.Video(label="Generated Video") |
|
|
|
submit_btn.click( |
|
fn=process_audio_to_video, |
|
inputs=[ |
|
audio_input, fg_color, bg_color, |
|
font_name_dd, font_size_slider, font_color_picker, |
|
font_bg_color_picker, font_bg_alpha_slider, |
|
pos_h_radio, pos_v_radio |
|
], |
|
outputs=video_output |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch(inbrowser=True) |