avans06 commited on
Commit
4e47df7
·
1 Parent(s): dbee618

feat: Add dynamic image backgrounds and spectrogram opacity

This commit introduces a major feature allowing users to add image backgrounds to the generated spectrogram video. It also enhances the visualizer by making it semi-transparent when a background is present.

Files changed (1) hide show
  1. app.py +111 -22
app.py CHANGED
@@ -9,7 +9,7 @@ import subprocess
9
  import matplotlib.font_manager as fm
10
  from typing import Tuple, List, Dict
11
  from mutagen.flac import FLAC
12
- from moviepy import CompositeVideoClip, TextClip, VideoClip, AudioFileClip
13
 
14
  # --- Font Scanning and Management ---
15
  def get_font_display_name(font_path: str) -> Tuple[str, str]:
@@ -128,7 +128,7 @@ SYSTEM_FONTS_MAP, FONT_DISPLAY_NAMES = get_font_data()
128
  print(f"Scan complete. Found {len(FONT_DISPLAY_NAMES)} available fonts.")
129
 
130
 
131
- # --- CUE Sheet Parsing Logic (Unchanged) ---
132
  def cue_time_to_seconds(time_str: str) -> float:
133
  try:
134
  minutes, seconds, frames = map(int, time_str.split(':'))
@@ -160,7 +160,7 @@ def parse_cue_sheet_manually(cue_data: str) -> List[Dict[str, any]]:
160
  return tracks
161
 
162
 
163
- # --- Add a function to increase framerate using FFmpeg ---
164
  def increase_video_framerate(input_path: str, output_path: str, target_fps: int = 24):
165
  """
166
  Uses FFmpeg to increase the video's framerate without re-encoding.
@@ -203,7 +203,8 @@ def increase_video_framerate(input_path: str, output_path: str, target_fps: int
203
 
204
  # --- Main Processing Function ---
205
  def process_audio_to_video(
206
- audio_path: str, spec_fg_color: str, spec_bg_color: str,
 
207
  font_name: str, font_size: int, font_color: str,
208
  font_bg_color: str, font_bg_alpha: float,
209
  pos_h: str, pos_v: str
@@ -252,17 +253,74 @@ def process_audio_to_video(
252
  y, sr = librosa.load(audio_path, sr=None, mono=True)
253
  duration = librosa.get_duration(y=y, sr=sr)
254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255
  # Spectrogram calculation
256
  N_FFT, HOP_LENGTH, N_BANDS = 2048, 512, 32
257
  MIN_DB, MAX_DB = -80.0, 0.0
258
  S_mel = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=N_BANDS, fmax=sr/2)
259
  S_mel_db = librosa.power_to_db(S_mel, ref=np.max)
260
 
261
- # Frame generation logic
262
  def frame_generator(t):
263
- frame = np.full((HEIGHT, WIDTH, 3), bg_rgb, dtype=np.uint8)
264
- for i in range(1, 9):
265
- y_pos = int(i * (HEIGHT / 9)); frame[y_pos-1:y_pos, :] = grid_rgb
 
 
 
 
 
 
 
 
266
  time_idx = int((t / duration) * (S_mel_db.shape[1] - 1))
267
  bar_width = WIDTH / N_BANDS
268
  for i in range(N_BANDS):
@@ -279,17 +337,24 @@ def process_audio_to_video(
279
  return frame
280
 
281
  video_clip = VideoClip(frame_function=frame_generator, duration=duration)
 
 
 
 
 
 
 
282
  audio_clip = AudioFileClip(audio_path)
283
 
284
  # CUE Sheet title overlay logic
285
  text_clips = []
286
- tracks = []
287
  if audio_path.lower().endswith('.flac'):
288
  try:
289
- audio = FLAC(audio_path); tracks = parse_cue_sheet_manually(audio.tags['cuesheet'][0])
290
- print(f"Successfully parsed {len(tracks)} tracks from CUE sheet...")
291
- except Exception as e:
292
- print(f"Warning: Could not read or parse CUE sheet: {e}")
 
293
 
294
  if tracks:
295
  font_path = SYSTEM_FONTS_MAP.get(font_name)
@@ -310,13 +375,17 @@ def process_audio_to_video(
310
  if text_duration <= 0: continue
311
 
312
  # Note: TextClip's `color` argument can handle color names like 'white' directly
313
- txt_clip = (TextClip(text=f"{i+1}. {title}", font_size=font_size, color=font_color, font=font_path, bg_color=font_bg_rgba)
314
  .with_position(position)
315
  .with_duration(text_duration)
316
  .with_start(start_time))
317
  text_clips.append(txt_clip)
318
 
319
- final_clip = CompositeVideoClip([video_clip] + text_clips).with_audio(audio_clip)
 
 
 
 
320
 
321
  # Step 1: Render the slow, 1 FPS intermediate file
322
  print(f"Step 1/2: Rendering base video at {RENDER_FPS} FPS...")
@@ -361,19 +430,37 @@ with gr.Blocks(title="Spectrogram Video Generator") as iface:
361
  with gr.Column(scale=1):
362
  audio_input = gr.Audio(type="filepath", label="Upload Audio File")
363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364
  with gr.Accordion("Visualizer Options", open=True):
365
  fg_color = gr.ColorPicker(value="#71808c", label="Spectrogram Bar Top Color")
366
- bg_color = gr.ColorPicker(value="#2C3E50", label="Background Color")
367
 
368
  with gr.Accordion("Text Overlay Options", open=True):
369
-
370
- # --- CORE CORRECTION: Add clarification text ---
371
  gr.Markdown(
372
  "**Note:** These options only take effect if the input audio file has an embedded CUE sheet."
373
  )
374
- gr.Markdown("---") # Add a separator line
375
- # --- CORRECTION END ---
376
-
377
  gr.Markdown("If your CUE sheet contains non-English characters, please select a compatible font.")
378
  default_font = "Microsoft JhengHei" if "Microsoft JhengHei" in FONT_DISPLAY_NAMES else ("Arial" if "Arial" in FONT_DISPLAY_NAMES else (FONT_DISPLAY_NAMES[0] if FONT_DISPLAY_NAMES else None))
379
  font_name_dd = gr.Dropdown(choices=FONT_DISPLAY_NAMES, value=default_font, label="Font Family")
@@ -396,10 +483,12 @@ with gr.Blocks(title="Spectrogram Video Generator") as iface:
396
  with gr.Column(scale=2):
397
  video_output = gr.Video(label="Generated Video")
398
 
 
399
  submit_btn.click(
400
  fn=process_audio_to_video,
401
  inputs=[
402
- audio_input, fg_color, bg_color,
 
403
  font_name_dd, font_size_slider, font_color_picker,
404
  font_bg_color_picker, font_bg_alpha_slider,
405
  pos_h_radio, pos_v_radio
 
9
  import matplotlib.font_manager as fm
10
  from typing import Tuple, List, Dict
11
  from mutagen.flac import FLAC
12
+ from moviepy import CompositeVideoClip, TextClip, VideoClip, AudioFileClip, ImageClip
13
 
14
  # --- Font Scanning and Management ---
15
  def get_font_display_name(font_path: str) -> Tuple[str, str]:
 
128
  print(f"Scan complete. Found {len(FONT_DISPLAY_NAMES)} available fonts.")
129
 
130
 
131
+ # --- CUE Sheet Parsing Logic ---
132
  def cue_time_to_seconds(time_str: str) -> float:
133
  try:
134
  minutes, seconds, frames = map(int, time_str.split(':'))
 
160
  return tracks
161
 
162
 
163
+ # --- FFmpeg Framerate Conversion ---
164
  def increase_video_framerate(input_path: str, output_path: str, target_fps: int = 24):
165
  """
166
  Uses FFmpeg to increase the video's framerate without re-encoding.
 
203
 
204
  # --- Main Processing Function ---
205
  def process_audio_to_video(
206
+ audio_path: str, image_paths: List[str],
207
+ spec_fg_color: str, spec_bg_color: str,
208
  font_name: str, font_size: int, font_color: str,
209
  font_bg_color: str, font_bg_alpha: float,
210
  pos_h: str, pos_v: str
 
253
  y, sr = librosa.load(audio_path, sr=None, mono=True)
254
  duration = librosa.get_duration(y=y, sr=sr)
255
 
256
+ # --- Image Processing Logic ---
257
+ image_clips = []
258
+ # Check if any images were uploaded.
259
+ if image_paths and len(image_paths) > 0:
260
+ print(f"Found {len(image_paths)} images to process.")
261
+
262
+ # First, try to parse the CUE sheet from the audio file.
263
+ tracks = []
264
+ if audio_path.lower().endswith('.flac'):
265
+ try:
266
+ audio_meta = FLAC(audio_path)
267
+ if 'cuesheet' in audio_meta.tags:
268
+ tracks = parse_cue_sheet_manually(audio_meta.tags['cuesheet'][0])
269
+ print(f"Successfully parsed {len(tracks)} tracks from CUE sheet.")
270
+ except Exception as e:
271
+ print(f"Warning: Could not read or parse CUE sheet: {e}")
272
+
273
+ # Mode 1: If CUE tracks match the number of images, align them.
274
+ if tracks and len(tracks) == len(image_paths):
275
+ print("Image count matches track count. Aligning images with tracks.")
276
+ for i, (track, img_path) in enumerate(zip(tracks, image_paths)):
277
+ start_time = track.get('start_time', 0)
278
+ # The end time of a track is the start time of the next, or the total duration for the last track.
279
+ end_time = tracks[i+1].get('start_time', duration) if i + 1 < len(tracks) else duration
280
+ img_duration = end_time - start_time
281
+ if img_duration <= 0: continue
282
+
283
+ # Create an ImageClip for the duration of the track.
284
+ clip = (ImageClip(img_path)
285
+ .set_duration(img_duration)
286
+ .set_start(start_time)
287
+ .resize(width=WIDTH, height=HEIGHT)) # Resize to fit video dimensions
288
+ image_clips.append(clip)
289
+
290
+ # Mode 2: If no CUE or mismatch, distribute images evenly across the audio duration.
291
+ else:
292
+ if tracks: print("Image count does not match track count. Distributing images evenly.")
293
+ else: print("No CUE sheet found. Distributing images evenly.")
294
+
295
+ img_duration = duration / len(image_paths)
296
+ for i, img_path in enumerate(image_paths):
297
+ start_time = i * img_duration
298
+ # Create an ImageClip for a calculated segment of time.
299
+ clip = (ImageClip(img_path)
300
+ .set_duration(img_duration)
301
+ .set_start(start_time)
302
+ .resize(width=WIDTH, height=HEIGHT)) # Resize to fit video dimensions
303
+ image_clips.append(clip)
304
+
305
  # Spectrogram calculation
306
  N_FFT, HOP_LENGTH, N_BANDS = 2048, 512, 32
307
  MIN_DB, MAX_DB = -80.0, 0.0
308
  S_mel = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=N_BANDS, fmax=sr/2)
309
  S_mel_db = librosa.power_to_db(S_mel, ref=np.max)
310
 
311
+ # Frame generation logic for the spectrogram
312
  def frame_generator(t):
313
+ # If images are used as background, the spectrogram's own background should be transparent.
314
+ # Otherwise, use the selected background color.
315
+ # Here, we will use a simple opacity setting on the final clip, so we always generate the frame.
316
+ frame_bg = bg_rgb if not image_clips else (0,0,0) # Use black if it will be made transparent later
317
+ frame = np.full((HEIGHT, WIDTH, 3), frame_bg, dtype=np.uint8)
318
+
319
+ # Draw the grid lines only if no images are being used.
320
+ if not image_clips:
321
+ for i in range(1, 9):
322
+ y_pos = int(i * (HEIGHT / 9)); frame[y_pos-1:y_pos, :] = grid_rgb
323
+
324
  time_idx = int((t / duration) * (S_mel_db.shape[1] - 1))
325
  bar_width = WIDTH / N_BANDS
326
  for i in range(N_BANDS):
 
337
  return frame
338
 
339
  video_clip = VideoClip(frame_function=frame_generator, duration=duration)
340
+
341
+ # --- NEW: Set Spectrogram Opacity ---
342
+ # If image clips were created, make the spectrogram layer 50% transparent.
343
+ if image_clips:
344
+ print("Applying 50% opacity to spectrogram layer.")
345
+ video_clip = video_clip.set_opacity(0.5)
346
+
347
  audio_clip = AudioFileClip(audio_path)
348
 
349
  # CUE Sheet title overlay logic
350
  text_clips = []
 
351
  if audio_path.lower().endswith('.flac'):
352
  try:
353
+ audio_meta = FLAC(audio_path)
354
+ if 'cuesheet' in audio_meta.tags:
355
+ tracks = parse_cue_sheet_manually(audio_meta.tags['cuesheet'][0])
356
+ except Exception:
357
+ pass # Already handled above
358
 
359
  if tracks:
360
  font_path = SYSTEM_FONTS_MAP.get(font_name)
 
375
  if text_duration <= 0: continue
376
 
377
  # Note: TextClip's `color` argument can handle color names like 'white' directly
378
+ txt_clip = (TextClip(text=f"{i+1}. {title}", font_size=font_size, color=font_color, font=font_path, bg_color=f'rgba({font_bg_rgba[0]}, {font_bg_rgba[1]}, {font_bg_rgba[2]}, {font_bg_alpha})')
379
  .with_position(position)
380
  .with_duration(text_duration)
381
  .with_start(start_time))
382
  text_clips.append(txt_clip)
383
 
384
+ # --- Clip Composition ---
385
+ # The final composition order is important: images at the bottom, then spectrogram, then text.
386
+ # The base layer is now the list of image clips.
387
+ final_layers = image_clips + [video_clip] + text_clips
388
+ final_clip = CompositeVideoClip(final_layers).with_audio(audio_clip)
389
 
390
  # Step 1: Render the slow, 1 FPS intermediate file
391
  print(f"Step 1/2: Rendering base video at {RENDER_FPS} FPS...")
 
430
  with gr.Column(scale=1):
431
  audio_input = gr.Audio(type="filepath", label="Upload Audio File")
432
 
433
+ # --- Image Upload Component ---
434
+ gr.Markdown(
435
+ """
436
+ ### Background Image Options (Optional)
437
+
438
+ Upload one or more images to create a dynamic background for the video. The display behavior changes based on your audio file and the number of images provided.
439
+
440
+ * **Mode 1: CUE Sheet Synchronization**
441
+ If your audio file contains an embedded CUE sheet AND the number of images you upload **exactly matches** the number of tracks, the images will be synchronized with the tracks. The first image will appear during the first track, the second during the second, and so on.
442
+
443
+ * **Mode 2: Even Time Distribution**
444
+ In all other cases (e.g., the audio has no CUE sheet, or the number of images and tracks do not match), the images will be displayed sequentially. The total duration of the video will be divided equally among all uploaded images.
445
+
446
+ **Note:** When any image is used as a background, the spectrogram visualizer will automatically become **semi-transparent** to ensure the background is clearly visible.
447
+ """
448
+ )
449
+ image_uploads = gr.File(
450
+ label="Upload Background Images",
451
+ file_count="multiple", # Allow multiple files
452
+ file_types=["image"] # Accept only image formats
453
+ )
454
+
455
  with gr.Accordion("Visualizer Options", open=True):
456
  fg_color = gr.ColorPicker(value="#71808c", label="Spectrogram Bar Top Color")
457
+ bg_color = gr.ColorPicker(value="#2C3E50", label="Background Color (if no images)")
458
 
459
  with gr.Accordion("Text Overlay Options", open=True):
 
 
460
  gr.Markdown(
461
  "**Note:** These options only take effect if the input audio file has an embedded CUE sheet."
462
  )
463
+ gr.Markdown("---")
 
 
464
  gr.Markdown("If your CUE sheet contains non-English characters, please select a compatible font.")
465
  default_font = "Microsoft JhengHei" if "Microsoft JhengHei" in FONT_DISPLAY_NAMES else ("Arial" if "Arial" in FONT_DISPLAY_NAMES else (FONT_DISPLAY_NAMES[0] if FONT_DISPLAY_NAMES else None))
466
  font_name_dd = gr.Dropdown(choices=FONT_DISPLAY_NAMES, value=default_font, label="Font Family")
 
483
  with gr.Column(scale=2):
484
  video_output = gr.Video(label="Generated Video")
485
 
486
+ # --- Add image_uploads to the inputs list ---
487
  submit_btn.click(
488
  fn=process_audio_to_video,
489
  inputs=[
490
+ audio_input, image_uploads,
491
+ fg_color, bg_color,
492
  font_name_dd, font_size_slider, font_color_picker,
493
  font_bg_color_picker, font_bg_alpha_slider,
494
  pos_h_radio, pos_v_radio