File size: 4,828 Bytes
8135b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import math
import numpy as np


class Segment:

	def __init__(self, a, b):
		self.a = (int(a[0]), int(a[1]))
		self.b = (int(b[0]), int(b[1]))

		for dot in [self.a, self.b]:
			if len(dot) != 2:
				raise Exception(f"Creating a segment with more or less than two dots: Segment({a}, {b})")
			if type(dot[0]) != int or type(dot[1]) != int:
				raise Exception(f"Creating a segment with non-dots: Segment({a}, {b})")

	def __str__(self):
		return f"({self.a}, {self.b})"

	def __eq__(self, other):
		return any([
			self.a == other.a and self.b == other.b,
			self.a == other.b and self.b == other.a,
		])

	def dist(self):
		return math.sqrt(self.dist_x()**2 + self.dist_y()**2)

	def dist_x(self, keep_sign = False):
		dist = self.b[0] - self.a[0]
		return dist if keep_sign else abs(dist)

	def dist_y(self, keep_sign = False):
		dist = self.b[1] - self.a[1]
		return dist if keep_sign else abs(dist)

	def left(self):
		return min(self.a[0], self.b[0])

	def top(self):
		return min(self.a[1], self.b[1])

	def right(self):
		return max(self.a[0], self.b[0])

	def bottom(self):
		return max(self.a[1], self.b[1])

	def to_xyrb(self):
		return [self.left(), self.top(), self.right(), self.bottom()]

	def center(self):
		return (
			int(self.left() + self.dist_x() / 2),
			int(self.top() + self.dist_y() / 2),
		)

	def may_contain(self, dot):
		return all([
			dot[0] >= self.left(),
			dot[0] <= self.right(),
			dot[1] >= self.top(),
			dot[1] <= self.bottom(),
		])

	def intersect(self, other):
		gutter = max(self.dist(), other.dist()) * 5 / 100

		# angle too big ?
		if not self.angle_ok_with(other):
			return None

		# from here, segments are almost parallel

		# segments are apart ?
		if any(
			[
				self.right() < other.left() - gutter,  # self left from other
				self.left() > other.right() + gutter,  # self right from other
				self.bottom() < other.top() - gutter,  # self above other
				self.top() > other.bottom() + gutter,  # self below other
			]
		):
			return None

		projected_c = self.projected_point(other.a)
		dist_c_to_ab = Segment(other.a, projected_c).dist()

		projected_d = self.projected_point(other.b)
		dist_d_to_ab = Segment(other.b, projected_d).dist()

		# segments are a bit too far from each other
		if (dist_c_to_ab + dist_d_to_ab) / 2 > gutter:
			return None

		# segments overlap, or one contains the other
		#  A----B
		#     C----D
		# or
		#  A------------B
		#      C----D
		sorted_dots = sorted([self.a, self.b, other.a, other.b], key = sum)
		middle_dots = sorted_dots[1:3]
		b, c = middle_dots

		return Segment(b, c)

	def union(self, other):
		intersect = self.intersect(other)
		if intersect is None:
			return None

		dots = [tuple(self.a), tuple(self.b), tuple(other.a), tuple(other.b)]
		dots.remove(tuple(intersect.a))
		dots.remove(tuple(intersect.b))
		return Segment(dots[0], dots[1])

	def angle_with(self, other):
		return math.degrees(abs(self.angle() - other.angle()))

	def angle_ok_with(self, other):
		angle = self.angle_with(other)
		return angle < 10 or abs(angle - 180) < 10

	def angle(self):
		return math.atan(self.dist_y() / self.dist_x()) if self.dist_x() != 0 else math.pi / 2

	def intersect_all(self, segments):
		segments_match = []
		for segment in segments:
			s3 = self.intersect(segment)
			if s3 is not None:
				segments_match.append(s3)

		return Segment.union_all(segments_match)

	@staticmethod
	def along_polygon(polygon, i, j):
		dot1 = polygon[i][0]
		dot2 = polygon[j][0]
		split_segment = Segment(dot1, dot2)

		while True:
			i = (i - 1) % len(polygon)
			add_segment = Segment(polygon[i][0], polygon[(i + 1) % len(polygon)][0])
			if add_segment.angle_ok_with(split_segment):
				split_segment = Segment(add_segment.a, split_segment.b)
			else:
				break

		while True:
			j = (j + 1) % len(polygon)
			add_segment = Segment(polygon[(j - 1) % len(polygon)][0], polygon[j][0])
			if add_segment.angle_ok_with(split_segment):
				split_segment = Segment(split_segment.a, add_segment.b)
			else:
				break

		return split_segment

	@staticmethod
	def union_all(segments):
		unioned_segments = True
		while unioned_segments:
			unioned_segments = False
			dedup_segments = []
			used = []
			for i, s1 in enumerate(segments):
				for s2 in segments[i + 1:]:
					if s2 in used:
						continue

					s3 = s1.union(s2)
					if s3 is not None:
						unioned_segments = True
						dedup_segments += [s3]
						used.append(s1)
						used.append(s2)
						break

				if s1 not in used:
					dedup_segments += [s1]

			segments = dedup_segments

		return dedup_segments

	def projected_point(self, p):
		a = np.array(self.a)
		b = np.array(self.b)
		p = np.array(p)
		ap = p - a
		ab = b - a
		if ab[0] == 0 and ab[1] == 0:
			return a
		result = a + np.dot(ap, ab) / np.dot(ab, ab) * ab
		return (round(result[0]), round(result[1]))