#!/usr/bin/env python3 # # Copyright 2022-2024 Xiaomi Corp. (authors: Fangjun Kuang) # # See LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # References: # https://gradio.app/docs/#dropdown import logging import os import tempfile import time import urllib.request from datetime import datetime from examples import examples import gradio as gr import soundfile as sf from model import decode, get_pretrained_model, models def convert_to_wav(in_filename: str) -> str: """Convert the input audio file to a wave file""" out_filename = in_filename + ".wav" logging.info(f"Converting '{in_filename}' to '{out_filename}'") _ = os.system( f"ffmpeg -hide_banner -i \"{in_filename}\" -ar 16000 -ac 1 \"{out_filename}\" -y" ) return out_filename def build_html_output(s: str, style: str = "result_item_success"): return f"""
{s}
""" def submit_fn( repo_id: str, uploaded_file_path: str, microphone_audio_path: str, url_text: str, ): in_filename = None source_description = "" if uploaded_file_path: in_filename = uploaded_file_path source_description = "uploaded file" logging.info(f"Processing {source_description}: {in_filename}") if not os.path.exists(in_filename): return "", [], build_html_output( f"Uploaded file not found: {in_filename}, " "Please first upload a file and then click " 'the button "submit for recognition"', "result_item_error", ) elif microphone_audio_path: in_filename = microphone_audio_path source_description = "microphone recording" logging.info(f"Processing {source_description}: {in_filename}") if not os.path.exists(in_filename): return "", [], build_html_output( f"Microphone recording not found: {in_filename}, " "Please first click 'Record from microphone', speak, " "click 'Stop recording', and then " "click the button 'submit for recognition'", "result_item_error" ) elif url_text and url_text.strip(): source_description = "URL" logging.info(f"Processing {source_description}: {url_text}") # Ensure a temporary file is created that persists until process() is done with it. # Using delete=False and manual cleanup is safer here. temp_file = None try: with tempfile.NamedTemporaryFile(delete=False, suffix=".tmpaudio") as f: temp_file = f.name # Store the name for cleanup urllib.request.urlretrieve(url_text, temp_file) in_filename = temp_file # Process the downloaded file eventStr, events, html_info = process(repo_id=repo_id, in_filename=in_filename) # Clean up the temporary file after processing if temp_file and os.path.exists(temp_file): os.unlink(temp_file) return eventStr, events, html_info except Exception as e: logging.error(f"Error processing URL {url_text}: {e}", exc_info=True) # Clean up the temporary file in case of error if temp_file and os.path.exists(temp_file): os.unlink(temp_file) return "", [], build_html_output(f"Error processing URL: {str(e)}", "result_item_error") else: return "", [], build_html_output( "Please provide an audio input via upload, microphone, or URL.", "result_item_error", ) # Common processing for file-based inputs (upload, mic) if in_filename: try: return process( in_filename=in_filename, repo_id=repo_id, ) except Exception as e: logging.error(f"Error processing {source_description} {in_filename}: {e}", exc_info=True) return "", [], build_html_output(f"Error processing {source_description}: {str(e)}", "result_item_error") # Should not be reached if logic is correct, but as a fallback: return "", [], build_html_output("No valid input provided.", "result_item_error") def process( repo_id: str, in_filename: str, ): logging.info(f"repo_id: {repo_id}") logging.info(f"in_filename: {in_filename}") filename = convert_to_wav(in_filename) now = datetime.now() date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") logging.info(f"Started at {date_time}") start = time.time() tagger = get_pretrained_model(repo_id) events = decode(tagger, filename) eventStr = ", ".join([e.name for e in events]) events = [[e.name, f"{e.prob:.2f}"] for e in events] date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") end = time.time() info = sf.info(filename) duration = info.duration elapsed = end - start rtf = elapsed / duration logging.info(f"Finished at {date_time} s. Elapsed: {elapsed: .3f} s") info = f""" Wave duration : {duration: .3f} s
Processing time: {elapsed: .3f} s
RTF: {elapsed: .3f}/{duration: .3f} = {rtf:.3f}
""" if rtf > 1: info += ( "
We are loading the model for the first run. " "Please run again to measure the real RTF.
" ) logging.info(info) logging.info(f"\nrepo_id: {repo_id}\nDetected events: {events}") return eventStr, events, build_html_output(info) title = "# Audio tagging with [Next-gen Kaldi](https://github.com/k2-fsa) " description = """ This space shows how to do audio tagging with [Next-gen Kaldi](https://github.com/k2-fsa) It is running on a machine with 2 vCPUs with 16 GB RAM within a docker container provided by Hugging Face. See more information by visiting the following links: - If you want to deploy it locally, please see """ # css style is copied from # https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 css = """ .result {display:flex;flex-direction:column} .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} .result_item_success {background-color:mediumaquamarine;color:white;align-self:start} .result_item_error {background-color:#ff7070;color:white;align-self:start} """ demo = gr.Blocks(css=css) with demo: gr.Markdown(title) model_choices = list(models.keys()) model_dropdown = gr.Dropdown( choices=model_choices, label="Select a model", value=model_choices[0], ) with gr.Tabs(): with gr.TabItem("Upload from disk"): uploaded_file = gr.Audio( sources=["upload"], # Choose between "microphone", "upload" type="filepath", label="Upload from disk", ) with gr.TabItem("Record from microphone"): microphone = gr.Audio( sources=["microphone"], # Choose between "microphone", "upload" type="filepath", label="Record from microphone", ) with gr.TabItem("From URL"): url_textbox = gr.Textbox( max_lines=1, placeholder="URL to an audio file", label="URL", interactive=True, ) submit_button = gr.Button("Submit for recognition", variant="primary") output_string = gr.Textbox(label="Event (string)", show_label=True, show_copy_button=True) output_dataframe = gr.Dataframe(headers=["Event", "Probability"], label="Detected Events") output_html_info = gr.HTML(label="Processing Info") gr.Examples( examples=examples, inputs=[ model_dropdown, uploaded_file, ], outputs=[ output_string, output_dataframe, output_html_info, ], fn=submit_fn, ) # Connect the submit button to the unified function submit_button.click( fn=submit_fn, inputs=[ model_dropdown, uploaded_file, microphone, url_textbox, ], outputs=[ output_string, output_dataframe, output_html_info, ], ) gr.Markdown(description) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) demo.launch(inbrowser=True)