Spaces:
Sleeping
Sleeping
Commit
·
6c63009
1
Parent(s):
d048ec3
Add borda count instead of an average.
Browse files
app.py
CHANGED
|
@@ -16,7 +16,7 @@ initialize_file(project_repo=RESULTS_REPO, file_path=EVAL_RESULTS_PATH)
|
|
| 16 |
LEADERBOARD_DF = get_leaderboard_df(f"{EVAL_RESULTS_PATH}/results.tsv")
|
| 17 |
|
| 18 |
columns = LEADERBOARD_DF.columns.tolist()
|
| 19 |
-
demo = gr.Blocks()
|
| 20 |
|
| 21 |
# Choices for the filters
|
| 22 |
unselectable_columns = ["model"]
|
|
@@ -39,64 +39,71 @@ filter_skill_choices = [
|
|
| 39 |
|
| 40 |
with demo:
|
| 41 |
gr.HTML(TITLE)
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 44 |
-
with gr.TabItem("🏅
|
| 45 |
-
with gr.
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
with gr.Row():
|
| 71 |
-
filter_skills = gr.CheckboxGroup(
|
| 72 |
-
label="Select Skills",
|
| 73 |
-
choices=filter_skill_choices,
|
| 74 |
-
value=filter_skill_choices,
|
| 75 |
-
interactive=True,
|
| 76 |
-
elem_id="filter-language"
|
| 77 |
-
)
|
| 78 |
-
with gr.Column():
|
| 79 |
-
select_all_skills = gr.Button(
|
| 80 |
-
value="Select all skills",
|
| 81 |
-
elem_id="select-all-skills",
|
| 82 |
-
interactive=True,
|
| 83 |
-
size="sm",
|
| 84 |
-
)
|
| 85 |
-
deselect_all_skills = gr.Button(
|
| 86 |
-
value="Deselect all skills",
|
| 87 |
-
elem_id="deselect-all-skills",
|
| 88 |
-
interactive=True,
|
| 89 |
-
size="sm",
|
| 90 |
-
)
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
with gr.Column():
|
| 93 |
-
|
| 94 |
-
value=
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
elem_id="leaderboard-title"
|
| 99 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
with gr.Row():
|
| 102 |
with gr.Accordion("📙 Citation", open=False):
|
|
@@ -110,31 +117,49 @@ with demo:
|
|
| 110 |
|
| 111 |
|
| 112 |
def update_leaderboard(filter_task_items, filter_skills_items):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
filtered_df: pd.DataFrame = LEADERBOARD_DF.copy()
|
| 114 |
|
| 115 |
filtered_df = filtered_df[filtered_df["task"].isin(filter_task_items)]
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
cols = ["model", "task", "score"]
|
| 119 |
filtered_df = filtered_df[cols]
|
| 120 |
|
| 121 |
-
#
|
| 122 |
current_task_items = filtered_df["task"].unique().tolist()
|
| 123 |
-
filtered_df
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
# Reorder columns
|
| 127 |
-
filtered_df = filtered_df[["model", "
|
|
|
|
| 128 |
|
| 129 |
-
# Sort by
|
| 130 |
-
filtered_df = filtered_df.sort_values(by="
|
| 131 |
|
| 132 |
-
# Rename
|
| 133 |
-
filtered_df = filtered_df.rename(columns={
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
# Round values
|
| 136 |
for col in filtered_df.columns:
|
| 137 |
-
if col not in ["model"]:
|
| 138 |
filtered_df[col] = filtered_df[col].round(2)
|
| 139 |
|
| 140 |
return filtered_df
|
|
@@ -149,9 +174,7 @@ with demo:
|
|
| 149 |
)
|
| 150 |
|
| 151 |
select_all_tasks.click(lambda: filter_task_choices, inputs=[], outputs=[filter_task])
|
| 152 |
-
deselect_all_tasks.click(lambda: [], inputs=[], outputs=[filter_task])
|
| 153 |
select_all_skills.click(lambda: filter_skill_choices, inputs=[], outputs=[filter_skills])
|
| 154 |
-
deselect_all_skills.click(lambda: [], inputs=[], outputs=[filter_skills])
|
| 155 |
|
| 156 |
gr.Blocks.load(
|
| 157 |
block=demo,
|
|
|
|
| 16 |
LEADERBOARD_DF = get_leaderboard_df(f"{EVAL_RESULTS_PATH}/results.tsv")
|
| 17 |
|
| 18 |
columns = LEADERBOARD_DF.columns.tolist()
|
| 19 |
+
demo = gr.Blocks(theme=gr.themes.Monochrome())
|
| 20 |
|
| 21 |
# Choices for the filters
|
| 22 |
unselectable_columns = ["model"]
|
|
|
|
| 39 |
|
| 40 |
with demo:
|
| 41 |
gr.HTML(TITLE)
|
| 42 |
+
gr.Markdown(
|
| 43 |
+
"This is a collection of AveniBench results - a permissively licensed benchmark that tests a group of six key "
|
| 44 |
+
"finance-related skills: tabular reasoning, numerical reasoning, question answering, long context modelling, "
|
| 45 |
+
"summarisation and dialogue.", elem_classes="markdown-text",
|
| 46 |
+
)
|
| 47 |
+
gr.Markdown("Open an issue or contact the Authors to include your model into the leaderboard.", elem_classes="markdown-text")
|
| 48 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 49 |
+
with gr.TabItem("🏅 AveniBench Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 50 |
+
with gr.Row():
|
| 51 |
+
filter_task = gr.CheckboxGroup(
|
| 52 |
+
label="Select Tasks",
|
| 53 |
+
choices=filter_task_choices,
|
| 54 |
+
interactive=True,
|
| 55 |
+
value=filter_task_choices,
|
| 56 |
+
elem_id="filter_task",
|
| 57 |
+
scale=6
|
| 58 |
+
)
|
| 59 |
+
with gr.Column():
|
| 60 |
+
select_all_tasks = gr.Button(
|
| 61 |
+
value="Select all tasks",
|
| 62 |
+
elem_id="select-all-tasks",
|
| 63 |
+
size="sm",
|
| 64 |
+
scale=1
|
| 65 |
+
)
|
| 66 |
+
deselect_all_tasks = gr.ClearButton(
|
| 67 |
+
filter_task,
|
| 68 |
+
value="Deselect all tasks",
|
| 69 |
+
elem_id="deselect-all-tasks",
|
| 70 |
+
size="sm",
|
| 71 |
+
scale=1
|
| 72 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
with gr.Row():
|
| 75 |
+
filter_skills = gr.CheckboxGroup(
|
| 76 |
+
label="Select Skills",
|
| 77 |
+
choices=filter_skill_choices,
|
| 78 |
+
value=filter_skill_choices,
|
| 79 |
+
interactive=True,
|
| 80 |
+
elem_id="filter-language",
|
| 81 |
+
scale=6
|
| 82 |
+
)
|
| 83 |
with gr.Column():
|
| 84 |
+
select_all_skills = gr.Button(
|
| 85 |
+
value="Select all skills",
|
| 86 |
+
elem_id="select-all-skills",
|
| 87 |
+
size="sm",
|
| 88 |
+
scale=1
|
|
|
|
| 89 |
)
|
| 90 |
+
deselect_all_skills = gr.ClearButton(
|
| 91 |
+
filter_skills,
|
| 92 |
+
value="Deselect all skills",
|
| 93 |
+
elem_id="deselect-all-skills",
|
| 94 |
+
size="sm",
|
| 95 |
+
scale=1
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
with gr.Column():
|
| 99 |
+
leaderboard_table = gr.Dataframe(
|
| 100 |
+
value=LEADERBOARD_DF,
|
| 101 |
+
interactive=False,
|
| 102 |
+
type="pandas",
|
| 103 |
+
visible=True,
|
| 104 |
+
label="Leaderboard",
|
| 105 |
+
elem_id="leaderboard-title",
|
| 106 |
+
)
|
| 107 |
|
| 108 |
with gr.Row():
|
| 109 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
|
| 117 |
|
| 118 |
|
| 119 |
def update_leaderboard(filter_task_items, filter_skills_items):
|
| 120 |
+
# Empty tasks/skills set:
|
| 121 |
+
if not filter_task_items or not filter_skills_items:
|
| 122 |
+
return pd.DataFrame([], columns=["model", "Borda Count"])
|
| 123 |
+
|
| 124 |
filtered_df: pd.DataFrame = LEADERBOARD_DF.copy()
|
| 125 |
|
| 126 |
filtered_df = filtered_df[filtered_df["task"].isin(filter_task_items)]
|
| 127 |
+
|
| 128 |
+
filtered_df = filtered_df[filtered_df["skill"].apply(
|
| 129 |
+
lambda x: any(skill in x for skill in filter_skills_items)
|
| 130 |
+
)]
|
| 131 |
|
| 132 |
cols = ["model", "task", "score"]
|
| 133 |
filtered_df = filtered_df[cols]
|
| 134 |
|
| 135 |
+
# Calculate borda count
|
| 136 |
current_task_items = filtered_df["task"].unique().tolist()
|
| 137 |
+
filtered_df["borda-score"] = 0
|
| 138 |
+
for task in current_task_items:
|
| 139 |
+
filtered_df["borda-score"] += (filtered_df['score'].where(filtered_df["task"] == task)
|
| 140 |
+
.rank(ascending=True, method="max") - 1).fillna(0)
|
| 141 |
+
|
| 142 |
+
filtered_df = filtered_df.pivot(index="model", columns="task", values=["borda-score", "score"]).reset_index()
|
| 143 |
+
filtered_df["borda-score-sum"] = filtered_df["borda-score"].sum(axis=1)
|
| 144 |
+
filtered_df["borda-count"] = filtered_df["borda-score-sum"].rank(ascending=False, method="min")
|
| 145 |
|
| 146 |
# Reorder columns
|
| 147 |
+
filtered_df = filtered_df[["model", "borda-count", "score"]]
|
| 148 |
+
filtered_df.columns = ["model", "borda-count"] + sorted(filtered_df.columns.droplevel(level=0)[2:].tolist())
|
| 149 |
|
| 150 |
+
# Sort by borda count
|
| 151 |
+
filtered_df = filtered_df.sort_values(by="borda-count", ascending=True)
|
| 152 |
|
| 153 |
+
# Rename borda count with symbol
|
| 154 |
+
filtered_df = filtered_df.rename(columns={
|
| 155 |
+
"borda-count": "Borda Count",
|
| 156 |
+
"MultiHiertt EASY": "MHiertt EASY",
|
| 157 |
+
"MultiHiertt HARD": "MHiertt HARD",
|
| 158 |
+
})
|
| 159 |
|
| 160 |
# Round values
|
| 161 |
for col in filtered_df.columns:
|
| 162 |
+
if col not in ["model", "Borda Count"]:
|
| 163 |
filtered_df[col] = filtered_df[col].round(2)
|
| 164 |
|
| 165 |
return filtered_df
|
|
|
|
| 174 |
)
|
| 175 |
|
| 176 |
select_all_tasks.click(lambda: filter_task_choices, inputs=[], outputs=[filter_task])
|
|
|
|
| 177 |
select_all_skills.click(lambda: filter_skill_choices, inputs=[], outputs=[filter_skills])
|
|
|
|
| 178 |
|
| 179 |
gr.Blocks.load(
|
| 180 |
block=demo,
|