import gradio as gr import yolov5 import os from transformers import pipeline #ImageClassifier = pipeline(task="image-classification", model="") model = yolov5.load('./gentle-meadow.pt', device='cpu') def predict(image): results = model([image], size=224) #predictions = imageClassifier(image) # classMappings = { # 'police': "Police / Authorized Personnel", # 'public': 'Unauthorized Person' # } # output = {} # for item in predictions: # output[classMappings[item['label']]] = item['score'] return results.render()[0] demo = gr.Interface(fn=predict, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Image(type="pil"), ) demo.launch()