Spaces:
Runtime error
Runtime error
Create HebEMO.py
Browse files
HebEMO.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class HebEMO:
|
| 2 |
+
def __init__(self, device=0, emotions = ['expectation', 'happy', 'trust', 'fear', 'surprise', 'anger',
|
| 3 |
+
'sadness', 'disgust']):
|
| 4 |
+
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
self.device = device
|
| 9 |
+
self.emotions = emotions
|
| 10 |
+
self.hebemo_models = {}
|
| 11 |
+
|
| 12 |
+
for emo in tqdm(emotions):
|
| 13 |
+
self.hebemo_models[emo] = pipeline(
|
| 14 |
+
"sentiment-analysis",
|
| 15 |
+
model="../hebEMO/"+emo+'_classifier',
|
| 16 |
+
tokenizer="../heBERT_base_oscar",
|
| 17 |
+
device = self.device #run on GPU
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def hebemo(self, text = None, input_path=False, save_results=False, read_lines=False, plot=False):
|
| 22 |
+
'''
|
| 23 |
+
text (str): a text or list of text to analyze
|
| 24 |
+
input_path(str): the path to the text file (txt file, each row for different instance)
|
| 25 |
+
returns pandas DataFrame of the analyzed texts and save it to the same dir of the input file
|
| 26 |
+
'''
|
| 27 |
+
from pyplutchik import plutchik
|
| 28 |
+
import matplotlib.pyplot as plt
|
| 29 |
+
import pandas as pd
|
| 30 |
+
import time
|
| 31 |
+
import torch
|
| 32 |
+
from tqdm import tqdm
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
if text is None and type(input_path) is str:
|
| 36 |
+
# read the file
|
| 37 |
+
with open(input_path, encoding='utf8') as p:
|
| 38 |
+
txt = p.readlines()
|
| 39 |
+
|
| 40 |
+
elif text is not None and (input_path is None or input_path is False):
|
| 41 |
+
if type(text) is str:
|
| 42 |
+
if read_lines:
|
| 43 |
+
txt = text.split('\n')
|
| 44 |
+
else:
|
| 45 |
+
txt = [text]
|
| 46 |
+
elif type(text) is list:
|
| 47 |
+
txt = text
|
| 48 |
+
else:
|
| 49 |
+
raise ValueError('text should be text or list of text.')
|
| 50 |
+
else:
|
| 51 |
+
raise ValueError('you should provide a text string, list of strings or text path.')
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# run hebEMO
|
| 57 |
+
hebEMO_df = pd.DataFrame(txt)
|
| 58 |
+
for emo in tqdm(self.emotions):
|
| 59 |
+
x = self.hebemo_models[emo](txt)
|
| 60 |
+
hebEMO_df = hebEMO_df.join(pd.DataFrame(x).rename(columns = {'label': emo, 'score':'confidence_'+emo}))
|
| 61 |
+
del x
|
| 62 |
+
torch.cuda.empty_cache()
|
| 63 |
+
hebEMO_df = hebEMO_df.applymap(lambda x: 0 if x=='LABEL_0' else 1 if x=='LABEL_1' else x)
|
| 64 |
+
|
| 65 |
+
if save_results is not False:
|
| 66 |
+
gen_name = str(int(time.time()*1e7))
|
| 67 |
+
if type(save_results) is str:
|
| 68 |
+
hebEMO_df.to_csv(save_results+'/'+gen_name+'_heEMOed.csv', encoding='utf8')
|
| 69 |
+
else:
|
| 70 |
+
hebEMO_df.to_csv(gen_name+'_heEMOed.csv', encoding='utf8')
|
| 71 |
+
|
| 72 |
+
if plot:
|
| 73 |
+
hebEMO = pd.DataFrame()
|
| 74 |
+
for emo in hebEMO_df.columns[1::2]:
|
| 75 |
+
hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
|
| 76 |
+
hebEMO = hebEMO.rename(columns= {'happy': 'joy', 'expectation':'anticipation'})
|
| 77 |
+
|
| 78 |
+
for i in range(0,1):
|
| 79 |
+
ax = plutchik(hebEMO.to_dict(orient='records')[i])
|
| 80 |
+
print(hebEMO_df[0][i])
|
| 81 |
+
plt.show()
|
| 82 |
+
return (plt.figure())
|
| 83 |
+
else:
|
| 84 |
+
return (hebEMO_df)
|
| 85 |
+
HebEMO_model = HebEMO()
|