freyam
commited on
Commit
·
7192c24
1
Parent(s):
e0a1479
Restructure UX and optimise scripts for performance
Browse files- app.py +26 -14
- scripts/gender_distribution.py +43 -57
- scripts/gender_profession_bias.py +9 -19
app.py
CHANGED
|
@@ -110,7 +110,7 @@ def load_dataset(local_dataset, hf_dataset):
|
|
| 110 |
)
|
| 111 |
|
| 112 |
dataset_import_btn = gr.Button(
|
| 113 |
-
value="Import",
|
| 114 |
interactive=True,
|
| 115 |
variant="primary",
|
| 116 |
visible=True,
|
|
@@ -156,7 +156,17 @@ def import_dataset(dataset_sampling_method, dataset_sampling_size, dataset_colum
|
|
| 156 |
DATASET["sampling_size"] = dataset_sampling_size
|
| 157 |
DATASET["column"] = dataset_column
|
| 158 |
|
| 159 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
|
| 162 |
def import_methodology(methodology):
|
|
@@ -164,8 +174,7 @@ def import_methodology(methodology):
|
|
| 164 |
|
| 165 |
return (
|
| 166 |
gr.Markdown(
|
| 167 |
-
f"##
|
| 168 |
-
visible=True,
|
| 169 |
),
|
| 170 |
gr.Markdown(
|
| 171 |
METHODOLOGIES[methodology]["description"],
|
|
@@ -173,7 +182,7 @@ def import_methodology(methodology):
|
|
| 173 |
),
|
| 174 |
gr.Button(
|
| 175 |
value="Evaluate",
|
| 176 |
-
interactive=True,
|
| 177 |
variant="primary",
|
| 178 |
visible=True,
|
| 179 |
),
|
|
@@ -220,8 +229,11 @@ with BiasAware:
|
|
| 220 |
hf_dataset = gr.Textbox(visible=False)
|
| 221 |
hf_dataset_search_results = gr.Radio(visible=False)
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
dataset_sampling_method = gr.Radio(visible=False)
|
| 227 |
dataset_sampling_size = gr.Slider(visible=False)
|
|
@@ -237,6 +249,11 @@ with BiasAware:
|
|
| 237 |
choices=METHODOLOGIES.keys(),
|
| 238 |
)
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
evaluation_btn = gr.Button(
|
| 241 |
value="Evaluate",
|
| 242 |
interactive=False,
|
|
@@ -244,11 +261,6 @@ with BiasAware:
|
|
| 244 |
visible=True,
|
| 245 |
)
|
| 246 |
|
| 247 |
-
methodology_description = gr.Markdown(visible=False)
|
| 248 |
-
|
| 249 |
-
with gr.Column(scale=2):
|
| 250 |
-
result_title = gr.Markdown("## Results")
|
| 251 |
-
|
| 252 |
result_description = gr.Markdown(visible=False)
|
| 253 |
result_plot = gr.Plot(show_label=False, container=False, visible=False)
|
| 254 |
result_df = gr.DataFrame(visible=False)
|
|
@@ -343,13 +355,13 @@ with BiasAware:
|
|
| 343 |
dataset_sampling_size,
|
| 344 |
dataset_column,
|
| 345 |
],
|
| 346 |
-
outputs=[
|
| 347 |
)
|
| 348 |
|
| 349 |
methodology.input(
|
| 350 |
fn=import_methodology,
|
| 351 |
inputs=[methodology],
|
| 352 |
-
outputs=[
|
| 353 |
)
|
| 354 |
|
| 355 |
evaluation_btn.click(
|
|
|
|
| 110 |
)
|
| 111 |
|
| 112 |
dataset_import_btn = gr.Button(
|
| 113 |
+
value="Import Dataset",
|
| 114 |
interactive=True,
|
| 115 |
variant="primary",
|
| 116 |
visible=True,
|
|
|
|
| 156 |
DATASET["sampling_size"] = dataset_sampling_size
|
| 157 |
DATASET["column"] = dataset_column
|
| 158 |
|
| 159 |
+
return (
|
| 160 |
+
gr.Markdown(
|
| 161 |
+
f"## Results (Dataset: {'✅' if DATASET['name'] else '❎'}) (Methodology: {'✅' if DATASET['methodology'] else '❎'})"
|
| 162 |
+
),
|
| 163 |
+
gr.Button(
|
| 164 |
+
value="Evaluate",
|
| 165 |
+
interactive=(True if DATASET["name"] and DATASET["methodology"] else False),
|
| 166 |
+
variant="primary",
|
| 167 |
+
visible=True,
|
| 168 |
+
),
|
| 169 |
+
)
|
| 170 |
|
| 171 |
|
| 172 |
def import_methodology(methodology):
|
|
|
|
| 174 |
|
| 175 |
return (
|
| 176 |
gr.Markdown(
|
| 177 |
+
f"## Results (Dataset: {'✅' if DATASET['name'] else '❎'}) (Methodology: {'✅' if DATASET['methodology'] else '❎'})"
|
|
|
|
| 178 |
),
|
| 179 |
gr.Markdown(
|
| 180 |
METHODOLOGIES[methodology]["description"],
|
|
|
|
| 182 |
),
|
| 183 |
gr.Button(
|
| 184 |
value="Evaluate",
|
| 185 |
+
interactive=(True if DATASET["name"] and DATASET["methodology"] else False),
|
| 186 |
variant="primary",
|
| 187 |
visible=True,
|
| 188 |
),
|
|
|
|
| 229 |
hf_dataset = gr.Textbox(visible=False)
|
| 230 |
hf_dataset_search_results = gr.Radio(visible=False)
|
| 231 |
|
| 232 |
+
with gr.Row():
|
| 233 |
+
with gr.Column(scale=1):
|
| 234 |
+
dataset_load_btn = gr.Button(visible=False)
|
| 235 |
+
with gr.Column(scale=1):
|
| 236 |
+
dataset_import_btn = gr.Button(visible=False)
|
| 237 |
|
| 238 |
dataset_sampling_method = gr.Radio(visible=False)
|
| 239 |
dataset_sampling_size = gr.Slider(visible=False)
|
|
|
|
| 249 |
choices=METHODOLOGIES.keys(),
|
| 250 |
)
|
| 251 |
|
| 252 |
+
methodology_description = gr.Markdown(visible=False)
|
| 253 |
+
|
| 254 |
+
with gr.Column(scale=2):
|
| 255 |
+
result_title = gr.Markdown("## Results (Dataset: ❎) (Methodology: ❎)")
|
| 256 |
+
|
| 257 |
evaluation_btn = gr.Button(
|
| 258 |
value="Evaluate",
|
| 259 |
interactive=False,
|
|
|
|
| 261 |
visible=True,
|
| 262 |
)
|
| 263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
result_description = gr.Markdown(visible=False)
|
| 265 |
result_plot = gr.Plot(show_label=False, container=False, visible=False)
|
| 266 |
result_df = gr.DataFrame(visible=False)
|
|
|
|
| 355 |
dataset_sampling_size,
|
| 356 |
dataset_column,
|
| 357 |
],
|
| 358 |
+
outputs=[result_title, evaluation_btn],
|
| 359 |
)
|
| 360 |
|
| 361 |
methodology.input(
|
| 362 |
fn=import_methodology,
|
| 363 |
inputs=[methodology],
|
| 364 |
+
outputs=[result_title, methodology_description, evaluation_btn],
|
| 365 |
)
|
| 366 |
|
| 367 |
evaluation_btn.click(
|
scripts/gender_distribution.py
CHANGED
|
@@ -3,83 +3,68 @@ import json
|
|
| 3 |
import plotly.express as px
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
-
with open("config/gender_lexicons.json", "r") as lexicon_file:
|
| 7 |
-
gender_lexicons = json.load(lexicon_file)
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
female_pattern = re.compile(
|
| 14 |
-
r"\b({})\b".format("|".join(map(re.escape, female_lexicon)))
|
| 15 |
-
)
|
| 16 |
|
| 17 |
|
| 18 |
def count_gender_terms(text, gender_pattern):
|
| 19 |
-
|
| 20 |
-
return len(matches)
|
| 21 |
|
| 22 |
|
| 23 |
def get_gender_tag(count_male_terms, count_female_terms):
|
| 24 |
total_terms = count_male_terms + count_female_terms
|
| 25 |
-
|
| 26 |
if total_terms == 0:
|
| 27 |
return "No Gender"
|
| 28 |
|
| 29 |
male_proportion = (count_male_terms / total_terms) * 100
|
|
|
|
|
|
|
| 30 |
if male_proportion >= 75:
|
| 31 |
return "Male Strongly Positive Gender"
|
| 32 |
elif male_proportion >= 50:
|
| 33 |
return "Male Positive Gender"
|
| 34 |
-
|
| 35 |
-
female_proportion = (count_female_terms / total_terms) * 100
|
| 36 |
-
if female_proportion >= 75:
|
| 37 |
return "Female Strongly Positive Gender"
|
| 38 |
elif female_proportion >= 50:
|
| 39 |
return "Female Positive Gender"
|
| 40 |
-
|
| 41 |
return "Equal Gender"
|
| 42 |
|
| 43 |
|
| 44 |
-
def
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
"Equal Gender",
|
| 48 |
-
"Male Positive Gender",
|
| 49 |
-
"Male Strongly Positive Gender",
|
| 50 |
-
"Female Positive Gender",
|
| 51 |
-
"Female Strongly Positive Gender",
|
| 52 |
-
]
|
| 53 |
-
|
| 54 |
-
gender_counts = sample_df["gender_category"].value_counts()
|
| 55 |
-
result = {label: str(gender_counts.get(label, 0)) for label in gender_labels}
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
labels = [
|
| 62 |
-
"No Gender",
|
| 63 |
-
"Equal Gender",
|
| 64 |
-
"Male Positive Gender",
|
| 65 |
-
"Male Strongly Positive Gender",
|
| 66 |
-
"Female Positive Gender",
|
| 67 |
-
"Female Strongly Positive Gender",
|
| 68 |
-
]
|
| 69 |
|
| 70 |
-
values = [gender_labels[label] for label in labels]
|
| 71 |
|
|
|
|
| 72 |
fig = px.pie(
|
| 73 |
values=values,
|
| 74 |
names=labels,
|
| 75 |
title="Gender Distribution",
|
| 76 |
-
category_orders={"names": labels},
|
| 77 |
)
|
| 78 |
|
| 79 |
fig.update_traces(
|
| 80 |
pull=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
|
| 81 |
textinfo="percent+label",
|
| 82 |
-
marker=dict(
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
|
| 85 |
fig.update_layout(showlegend=False)
|
|
@@ -88,28 +73,29 @@ def plot_gender_category_counts(gender_labels):
|
|
| 88 |
|
| 89 |
|
| 90 |
def eval_gender_distribution(data):
|
| 91 |
-
|
| 92 |
|
| 93 |
-
data["count_male_terms"]
|
| 94 |
-
lambda x:
|
| 95 |
-
)
|
| 96 |
-
data["count_female_terms"] = data[data.columns[0]].apply(
|
| 97 |
-
lambda x: count_gender_terms(x, female_pattern)
|
| 98 |
)
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
-
result_df = (
|
| 109 |
-
|
| 110 |
-
.reset_index()
|
| 111 |
-
.rename(columns={"index": "Metric", 0: "Value"})
|
| 112 |
)
|
|
|
|
| 113 |
|
| 114 |
result_conclusion = ""
|
| 115 |
|
|
|
|
| 3 |
import plotly.express as px
|
| 4 |
import pandas as pd
|
| 5 |
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
def load_gender_lexicons():
|
| 8 |
+
with open("config/gender_lexicons.json", "r") as lexicon_file:
|
| 9 |
+
gender_lexicons = json.load(lexicon_file)
|
| 10 |
+
return gender_lexicons
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def count_gender_terms(text, gender_pattern):
|
| 14 |
+
return len(gender_pattern.findall(text))
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
def get_gender_tag(count_male_terms, count_female_terms):
|
| 18 |
total_terms = count_male_terms + count_female_terms
|
|
|
|
| 19 |
if total_terms == 0:
|
| 20 |
return "No Gender"
|
| 21 |
|
| 22 |
male_proportion = (count_male_terms / total_terms) * 100
|
| 23 |
+
female_proportion = (count_female_terms / total_terms) * 100
|
| 24 |
+
|
| 25 |
if male_proportion >= 75:
|
| 26 |
return "Male Strongly Positive Gender"
|
| 27 |
elif male_proportion >= 50:
|
| 28 |
return "Male Positive Gender"
|
| 29 |
+
elif female_proportion >= 75:
|
|
|
|
|
|
|
| 30 |
return "Female Strongly Positive Gender"
|
| 31 |
elif female_proportion >= 50:
|
| 32 |
return "Female Positive Gender"
|
|
|
|
| 33 |
return "Equal Gender"
|
| 34 |
|
| 35 |
|
| 36 |
+
def analyze_text(text, gender_lexicons):
|
| 37 |
+
male_lexicon = set(gender_lexicons.get("male_lexicons"))
|
| 38 |
+
female_lexicon = set(gender_lexicons.get("female_lexicons"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
male_pattern = re.compile(
|
| 41 |
+
r"\b({})\b".format("|".join(map(re.escape, male_lexicon)))
|
| 42 |
+
)
|
| 43 |
+
female_pattern = re.compile(
|
| 44 |
+
r"\b({})\b".format("|".join(map(re.escape, female_lexicon)))
|
| 45 |
+
)
|
| 46 |
|
| 47 |
+
text = text.lower().strip()
|
| 48 |
+
count_male_terms = count_gender_terms(text, male_pattern)
|
| 49 |
+
count_female_terms = count_gender_terms(text, female_pattern)
|
| 50 |
+
gender_category = get_gender_tag(count_male_terms, count_female_terms)
|
| 51 |
|
| 52 |
+
return count_male_terms, count_female_terms, gender_category
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
| 54 |
|
| 55 |
+
def plot_gender_category_counts(labels, values):
|
| 56 |
fig = px.pie(
|
| 57 |
values=values,
|
| 58 |
names=labels,
|
| 59 |
title="Gender Distribution",
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
fig.update_traces(
|
| 63 |
pull=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
|
| 64 |
textinfo="percent+label",
|
| 65 |
+
marker=dict(
|
| 66 |
+
line=dict(color="#000000", width=1),
|
| 67 |
+
),
|
| 68 |
)
|
| 69 |
|
| 70 |
fig.update_layout(showlegend=False)
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
def eval_gender_distribution(data):
|
| 76 |
+
gender_lexicons = load_gender_lexicons()
|
| 77 |
|
| 78 |
+
data["count_male_terms"], data["count_female_terms"], data["gender_category"] = zip(
|
| 79 |
+
*data[data.columns[0]].apply(lambda x: analyze_text(x, gender_lexicons))
|
|
|
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
+
gender_labels = [
|
| 83 |
+
"No Gender",
|
| 84 |
+
"Equal Gender",
|
| 85 |
+
"Male Positive Gender",
|
| 86 |
+
"Male Strongly Positive Gender",
|
| 87 |
+
"Female Positive Gender",
|
| 88 |
+
"Female Strongly Positive Gender",
|
| 89 |
+
]
|
| 90 |
|
| 91 |
+
gender_counts = (
|
| 92 |
+
data["gender_category"].value_counts().reindex(gender_labels, fill_value=0)
|
| 93 |
+
)
|
| 94 |
|
| 95 |
+
result_df = pd.DataFrame(
|
| 96 |
+
{"Metric": gender_counts.index, "Value": gender_counts.values}
|
|
|
|
|
|
|
| 97 |
)
|
| 98 |
+
result_plot = plot_gender_category_counts(gender_labels, gender_counts)
|
| 99 |
|
| 100 |
result_conclusion = ""
|
| 101 |
|
scripts/gender_profession_bias.py
CHANGED
|
@@ -6,15 +6,13 @@ import plotly.express as px
|
|
| 6 |
import multiprocessing.pool
|
| 7 |
from spacy.lang.en import English
|
| 8 |
|
| 9 |
-
gender_lexicons = json.load(open("config/gender_lexicons.json", "r"))
|
| 10 |
-
profession_lexicons = json.load(open("config/profession_lexicons.json", "r"))
|
| 11 |
|
| 12 |
nlp = English()
|
| 13 |
nlp.add_pipe("sentencizer")
|
| 14 |
|
| 15 |
|
| 16 |
def call_multiprocessing_pool(df_text):
|
| 17 |
-
concurrent =
|
| 18 |
pool = multiprocessing.pool.ThreadPool(processes=concurrent)
|
| 19 |
result_list = pool.map(get_gender_prof_match_details, df_text, chunksize=1)
|
| 20 |
pool.close()
|
|
@@ -27,29 +25,21 @@ def call_multiprocessing_pool(df_text):
|
|
| 27 |
return return_df
|
| 28 |
|
| 29 |
|
| 30 |
-
def get_split_text(text):
|
| 31 |
-
doc = nlp(text)
|
| 32 |
-
sentences = [sent for sent in doc.sents]
|
| 33 |
-
return sentences
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def compile_regex_patterns(patterns):
|
| 37 |
-
return [
|
| 38 |
-
re.compile(r"\b({})\b".format("|".join(pattern)), flags=re.IGNORECASE)
|
| 39 |
-
for pattern in patterns
|
| 40 |
-
]
|
| 41 |
-
|
| 42 |
-
|
| 43 |
def get_gender_prof_match_details(df_text):
|
|
|
|
|
|
|
|
|
|
| 44 |
male_pronouns = gender_lexicons.get("male_pronouns")
|
| 45 |
female_pronouns = gender_lexicons.get("female_pronouns")
|
| 46 |
professions = profession_lexicons.get("professions")
|
| 47 |
|
| 48 |
-
male_pronoun_pat, female_pronoun_pat, professions_pat =
|
| 49 |
-
|
|
|
|
| 50 |
)
|
| 51 |
|
| 52 |
-
|
|
|
|
| 53 |
|
| 54 |
results = []
|
| 55 |
|
|
|
|
| 6 |
import multiprocessing.pool
|
| 7 |
from spacy.lang.en import English
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
| 10 |
nlp = English()
|
| 11 |
nlp.add_pipe("sentencizer")
|
| 12 |
|
| 13 |
|
| 14 |
def call_multiprocessing_pool(df_text):
|
| 15 |
+
concurrent = multiprocessing.cpu_count()
|
| 16 |
pool = multiprocessing.pool.ThreadPool(processes=concurrent)
|
| 17 |
result_list = pool.map(get_gender_prof_match_details, df_text, chunksize=1)
|
| 18 |
pool.close()
|
|
|
|
| 25 |
return return_df
|
| 26 |
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def get_gender_prof_match_details(df_text):
|
| 29 |
+
gender_lexicons = json.load(open("config/gender_lexicons.json", "r"))
|
| 30 |
+
profession_lexicons = json.load(open("config/profession_lexicons.json", "r"))
|
| 31 |
+
|
| 32 |
male_pronouns = gender_lexicons.get("male_pronouns")
|
| 33 |
female_pronouns = gender_lexicons.get("female_pronouns")
|
| 34 |
professions = profession_lexicons.get("professions")
|
| 35 |
|
| 36 |
+
male_pronoun_pat, female_pronoun_pat, professions_pat = (
|
| 37 |
+
re.compile(r"\b({})\b".format("|".join(pattern)), flags=re.IGNORECASE)
|
| 38 |
+
for pattern in [male_pronouns, female_pronouns, professions]
|
| 39 |
)
|
| 40 |
|
| 41 |
+
doc = nlp(df_text)
|
| 42 |
+
split_text = [sent for sent in doc.sents]
|
| 43 |
|
| 44 |
results = []
|
| 45 |
|