awacke1 commited on
Commit
c316f06
·
verified ·
1 Parent(s): e2b0478

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +179 -0
app.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ from scipy.sparse import csr_matrix
4
+ import pandas as pd
5
+ import time
6
+ import graphviz
7
+
8
+ # -----------------------------------------------------------------------------
9
+ # Title and Overview
10
+ # -----------------------------------------------------------------------------
11
+ st.title("Cortical Column Theory: Self-Modifying Memory Systems")
12
+ st.markdown("""
13
+ **Theory Overview:**
14
+ This application demonstrates a model inspired by Cortical Column Theory where the ability to self-modify is paramount.
15
+ - **Episodic Memory (E):** Represents short-term, conscious experience (~5–10 seconds) via introspective attention.
16
+ - **Semantic Memory (K):** Cumulative knowledge built over time (Mass + Agency), enabling free energy formation.
17
+ - **Neural Connectivity:** Modeled via sparse matrices to mimic voting neurons in cortical columns.
18
+ - **Social Bonding:** Hierarchical connections—from teams to humanity—facilitate maximum free energy (or ‘love’) at a cellular level.
19
+
20
+ These components interact in a dynamic system, much like how neocortical columns steer signals via voting neurons and dendritic excitement.
21
+ """)
22
+
23
+ # -----------------------------------------------------------------------------
24
+ # Create Tabs for Organized UI Sections
25
+ # -----------------------------------------------------------------------------
26
+ tabs = st.tabs([
27
+ "Theory",
28
+ "Neural Connectivity",
29
+ "Concept Graph",
30
+ "Interactive Components",
31
+ "NPS Score",
32
+ "Extra UI"
33
+ ])
34
+
35
+ # -----------------------------------------------------------------------------
36
+ # Tab 1: Theory Explanation
37
+ # -----------------------------------------------------------------------------
38
+ with tabs[0]:
39
+ st.header("Cortical Column Theory")
40
+ st.write("""
41
+ The central hypothesis is that life’s essential characteristic is its ability to self-modify.
42
+ In this model:
43
+
44
+ - **Episodic Memory (E)** functions as immediate, introspective attention over a 5–10 second window.
45
+ - **Semantic Memory (K)** aggregates past experiences into a knowledge base, growing as new connections (graph edges) form.
46
+ - **Free Energy** is produced as the system scales its pair bonds—from simple interactions (e.g., between two neurons) to complex networks (teams, organizations, and ultimately humanity).
47
+ - **Love (❤️)** is conceptualized as the maximal connection, representing the highest free energy state and optimal bond formation.
48
+
49
+ This theoretical framework abstracts how biological neural circuits might mirror self-coding systems in AI.
50
+ """)
51
+
52
+ # -----------------------------------------------------------------------------
53
+ # Tab 2: Neural Connectivity with Sparse Matrix
54
+ # -----------------------------------------------------------------------------
55
+ with tabs[1]:
56
+ st.header("Neural Connectivity Sparse Matrix")
57
+ st.write("Below is a demonstration of a sparse matrix simulating neural connectivity within a cortical column:")
58
+
59
+ # Create a random binary matrix (10 neurons, ~20% connectivity)
60
+ size = 10
61
+ density = 0.2
62
+ random_matrix = np.random.binomial(1, density, size=(size, size))
63
+ sparse_matrix = csr_matrix(random_matrix)
64
+
65
+ st.write("Sparse Matrix Representation:")
66
+ st.write(sparse_matrix)
67
+ st.write("Dense Matrix Representation:")
68
+ st.write(random_matrix)
69
+
70
+ # -----------------------------------------------------------------------------
71
+ # Tab 3: Emoji and Concept Graph UI
72
+ # -----------------------------------------------------------------------------
73
+ with tabs[2]:
74
+ st.header("Emoji and Concept Graph")
75
+ st.write("Visualizing core concepts with emojis where each node represents a key component of the theory:")
76
+
77
+ # Graphviz diagram using emojis and labels for key concepts.
78
+ graph_source = """
79
+ digraph G {
80
+ "Cortical Column 🧠" -> "Episodic Memory (E) ⏱️" [label="short-term"];
81
+ "Cortical Column 🧠" -> "Semantic Memory (K) 📚" [label="knowledge"];
82
+ "Episodic Memory (E) ⏱️" -> "Introspective Attention 🔍" [label="focus"];
83
+ "Semantic Memory (K) 📚" -> "Free Energy ⚡" [label="agency"];
84
+ "Free Energy ⚡" -> "Love ❤️" [label="bond"];
85
+ "Love ❤️" -> "Humanity 🌍" [label="connection"];
86
+ }
87
+ """
88
+ st.graphviz_chart(graph_source)
89
+
90
+ # -----------------------------------------------------------------------------
91
+ # Tab 4: Interactive UI Components
92
+ # -----------------------------------------------------------------------------
93
+ with tabs[3]:
94
+ st.header("Interactive Components Demonstration")
95
+
96
+ st.subheader("Input and Selection")
97
+ concept_input = st.text_input("Enter a concept label:", "Cortical Column Theory")
98
+ time_window = st.slider("Select attention window (seconds)", 1, 10, 5)
99
+ memory_type = st.radio("Select memory type", ("Episodic (E)", "Semantic (K)"))
100
+ neural_component = st.selectbox("Choose a neural component", ["Neuron", "Synapse", "Dendrite", "Axon"])
101
+ additional_components = st.multiselect("Select additional components", ["Free Energy", "Agency", "Mass", "Bond"])
102
+
103
+ st.subheader("Activation Controls")
104
+ if st.checkbox("Activate Introspective Attention"):
105
+ st.write("Introspective Attention Activated!")
106
+
107
+ if st.button("Execute Self-Modification Cycle"):
108
+ st.write("**Self-Modification Cycle Executed**")
109
+ st.write(f"Memory Type Selected: {memory_type}")
110
+ st.write(f"Attention Window: {time_window} seconds")
111
+ st.write(f"Neural Component: {neural_component}")
112
+ st.write(f"Additional Components: {additional_components}")
113
+
114
+ st.subheader("Media Components")
115
+ st.image("https://via.placeholder.com/150.png?text=Neural+Network", caption="Neural Network Representation")
116
+ # Note: The video below is a placeholder.
117
+ st.video("https://www.youtube.com/watch?v=dQw4w9WgXcQ")
118
+
119
+ st.subheader("Data and JSON Display")
120
+ df = pd.DataFrame({
121
+ "Component": ["Neuron", "Synapse", "Dendrite", "Axon"],
122
+ "Status": ["Active", "Active", "Inactive", "Active"]
123
+ })
124
+ st.dataframe(df)
125
+ sample_json = {
126
+ "Episodic": {"Duration": f"{time_window} sec", "Type": memory_type},
127
+ "Semantic": {"Label": concept_input}
128
+ }
129
+ st.json(sample_json)
130
+
131
+ st.subheader("File Upload and Color Picker")
132
+ uploaded_file = st.file_uploader("Upload a configuration file")
133
+ color = st.color_picker("Pick a highlight color", "#00f900")
134
+ st.write("Selected Color:", color)
135
+
136
+ st.subheader("Date and Time Inputs")
137
+ date_input = st.date_input("Select a date")
138
+ time_input = st.time_input("Select a time")
139
+ st.write("Date:", date_input, "Time:", time_input)
140
+
141
+ st.subheader("Progress Bar Simulation")
142
+ progress_bar = st.progress(0)
143
+ for percent_complete in range(101):
144
+ progress_bar.progress(percent_complete)
145
+ time.sleep(0.01)
146
+
147
+ st.subheader("Metrics and Download Button")
148
+ st.metric(label="Introspective Score", value=time_window*10, delta="+5")
149
+ st.download_button("Download Configuration", data="configuration data", file_name="config.txt")
150
+
151
+ # -----------------------------------------------------------------------------
152
+ # Tab 5: Self Reward Learning NPS Score
153
+ # -----------------------------------------------------------------------------
154
+ with tabs[4]:
155
+ st.header("Self Reward Learning NPS Score")
156
+ nps_score = st.slider("Rate Self Reward Learning (0-10):", 0, 10, 5)
157
+ if nps_score <= 6:
158
+ nps_comment = "Needs Improvement - Consider refining self-modification algorithms."
159
+ elif nps_score <= 8:
160
+ nps_comment = "Good, but can be better - Fine-tuning required."
161
+ else:
162
+ nps_comment = "Excellent! - The system demonstrates robust self-reward learning."
163
+ st.write(f"**NPS Score:** {nps_score} - {nps_comment}")
164
+
165
+ # -----------------------------------------------------------------------------
166
+ # Tab 6: Extra UI Components for Extended Demonstration
167
+ # -----------------------------------------------------------------------------
168
+ with tabs[5]:
169
+ st.header("Extra UI Components")
170
+ with st.expander("More Details"):
171
+ st.write("Additional explanations or interactive widgets can be added here.")
172
+
173
+ col1, col2 = st.columns(2)
174
+ with col1:
175
+ st.write("**Column 1:** Additional metrics or charts.")
176
+ st.line_chart(np.random.randn(20, 1))
177
+ with col2:
178
+ st.write("**Column 2:** Other interactive elements.")
179
+ st.bar_chart(np.random.randn(20, 1))