Spaces:
Runtime error
Runtime error
add sdxl
Browse files- app.py +91 -27
- requirements.txt +8 -3
app.py
CHANGED
|
@@ -1,18 +1,21 @@
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
import tempfile
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import rembg
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
-
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
| 11 |
from einops import rearrange
|
| 12 |
from huggingface_hub import hf_hub_download
|
| 13 |
from omegaconf import OmegaConf
|
| 14 |
from PIL import Image
|
| 15 |
from pytorch_lightning import seed_everything
|
|
|
|
| 16 |
from torchvision.transforms import v2
|
| 17 |
from tqdm import tqdm
|
| 18 |
|
|
@@ -22,6 +25,26 @@ from src.utils.infer_util import (remove_background, resize_foreground)
|
|
| 22 |
from src.utils.mesh_util import save_glb, save_obj
|
| 23 |
from src.utils.train_util import instantiate_from_config
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def find_cuda():
|
| 27 |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
|
@@ -52,7 +75,7 @@ def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexi
|
|
| 52 |
|
| 53 |
def check_input_image(input_image):
|
| 54 |
if input_image is None:
|
| 55 |
-
raise gr.Error("No image
|
| 56 |
|
| 57 |
|
| 58 |
def preprocess(input_image, do_remove_background):
|
|
@@ -125,6 +148,21 @@ def make3d(images):
|
|
| 125 |
return mesh_fpath, mesh_glb_fpath
|
| 126 |
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
# Configuration
|
| 129 |
cuda_path = find_cuda()
|
| 130 |
config_path = 'configs/instant-mesh-large.yaml'
|
|
@@ -166,6 +204,21 @@ model.load_state_dict(state_dict, strict=True)
|
|
| 166 |
|
| 167 |
model = model.to(device)
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
print('Loading Finished!')
|
| 170 |
|
| 171 |
# Gradio UI
|
|
@@ -173,19 +226,28 @@ with gr.Blocks() as demo:
|
|
| 173 |
with gr.Row(variant="panel"):
|
| 174 |
with gr.Column():
|
| 175 |
with gr.Row():
|
| 176 |
-
|
| 177 |
-
label="
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
image_mode="RGBA",
|
| 186 |
type="pil",
|
| 187 |
interactive=False
|
| 188 |
)
|
|
|
|
| 189 |
with gr.Row():
|
| 190 |
with gr.Group():
|
| 191 |
do_remove_background = gr.Checkbox(
|
|
@@ -196,18 +258,8 @@ with gr.Blocks() as demo:
|
|
| 196 |
label="Sample Steps", minimum=30, maximum=75, value=75, step=5)
|
| 197 |
|
| 198 |
with gr.Row():
|
| 199 |
-
|
| 200 |
-
"Generate", elem_id="generate", variant="primary")
|
| 201 |
-
|
| 202 |
-
with gr.Row(variant="panel"):
|
| 203 |
-
gr.Examples(
|
| 204 |
-
examples=[os.path.join("examples", img_name)
|
| 205 |
-
for img_name in sorted(os.listdir("examples"))],
|
| 206 |
-
inputs=[input_image],
|
| 207 |
-
label="Examples",
|
| 208 |
-
cache_examples=False,
|
| 209 |
-
examples_per_page=16
|
| 210 |
-
)
|
| 211 |
|
| 212 |
with gr.Column():
|
| 213 |
with gr.Row():
|
|
@@ -241,13 +293,25 @@ with gr.Blocks() as demo:
|
|
| 241 |
|
| 242 |
mv_images = gr.State()
|
| 243 |
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
fn=preprocess,
|
| 246 |
-
inputs=[
|
| 247 |
-
outputs=[
|
| 248 |
).success(
|
| 249 |
fn=generate_mvs,
|
| 250 |
-
inputs=[
|
| 251 |
outputs=[mv_images, mv_show_images]
|
| 252 |
).success(
|
| 253 |
fn=make3d,
|
|
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
import tempfile
|
| 4 |
+
import time
|
| 5 |
+
from os import path
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
import rembg
|
| 10 |
import spaces
|
| 11 |
import torch
|
| 12 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLPipeline, LCMScheduler
|
| 13 |
from einops import rearrange
|
| 14 |
from huggingface_hub import hf_hub_download
|
| 15 |
from omegaconf import OmegaConf
|
| 16 |
from PIL import Image
|
| 17 |
from pytorch_lightning import seed_everything
|
| 18 |
+
from safetensors.torch import load_file
|
| 19 |
from torchvision.transforms import v2
|
| 20 |
from tqdm import tqdm
|
| 21 |
|
|
|
|
| 25 |
from src.utils.mesh_util import save_glb, save_obj
|
| 26 |
from src.utils.train_util import instantiate_from_config
|
| 27 |
|
| 28 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
| 29 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
| 30 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
| 31 |
+
os.environ["HF_HOME"] = cache_path
|
| 32 |
+
|
| 33 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class timer:
|
| 37 |
+
def __init__(self, method_name="timed process"):
|
| 38 |
+
self.method = method_name
|
| 39 |
+
|
| 40 |
+
def __enter__(self):
|
| 41 |
+
self.start = time.time()
|
| 42 |
+
print(f"{self.method} starts")
|
| 43 |
+
|
| 44 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 45 |
+
end = time.time()
|
| 46 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 47 |
+
|
| 48 |
|
| 49 |
def find_cuda():
|
| 50 |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
|
|
|
| 75 |
|
| 76 |
def check_input_image(input_image):
|
| 77 |
if input_image is None:
|
| 78 |
+
raise gr.Error("No image selected!")
|
| 79 |
|
| 80 |
|
| 81 |
def preprocess(input_image, do_remove_background):
|
|
|
|
| 148 |
return mesh_fpath, mesh_glb_fpath
|
| 149 |
|
| 150 |
|
| 151 |
+
@spaces.GPU
|
| 152 |
+
def process_image(num_images, height, width, prompt, seed):
|
| 153 |
+
global pipe
|
| 154 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
| 155 |
+
return pipe(
|
| 156 |
+
prompt=[prompt]*num_images,
|
| 157 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
| 158 |
+
num_inference_steps=1,
|
| 159 |
+
guidance_scale=0.,
|
| 160 |
+
height=int(height),
|
| 161 |
+
width=int(width),
|
| 162 |
+
timesteps=[800]
|
| 163 |
+
).images
|
| 164 |
+
|
| 165 |
+
|
| 166 |
# Configuration
|
| 167 |
cuda_path = find_cuda()
|
| 168 |
config_path = 'configs/instant-mesh-large.yaml'
|
|
|
|
| 204 |
|
| 205 |
model = model.to(device)
|
| 206 |
|
| 207 |
+
# Load text-to-image model
|
| 208 |
+
print('Loading text-to-image model ...')
|
| 209 |
+
if not path.exists(cache_path):
|
| 210 |
+
os.makedirs(cache_path, exist_ok=True)
|
| 211 |
+
|
| 212 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 213 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16)
|
| 214 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 215 |
+
|
| 216 |
+
unet_state = load_file(hf_hub_download(
|
| 217 |
+
"ByteDance/Hyper-SD", "Hyper-SDXL-1step-Unet.safetensors"), device="cuda")
|
| 218 |
+
pipe.unet.load_state_dict(unet_state)
|
| 219 |
+
pipe.scheduler = LCMScheduler.from_config(
|
| 220 |
+
pipe.scheduler.config, timestep_spacing="trailing")
|
| 221 |
+
|
| 222 |
print('Loading Finished!')
|
| 223 |
|
| 224 |
# Gradio UI
|
|
|
|
| 226 |
with gr.Row(variant="panel"):
|
| 227 |
with gr.Column():
|
| 228 |
with gr.Row():
|
| 229 |
+
num_images = gr.Slider(
|
| 230 |
+
label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
|
| 231 |
+
height = gr.Number(label="Image Height",
|
| 232 |
+
value=1024, interactive=True)
|
| 233 |
+
width = gr.Number(label="Image Width",
|
| 234 |
+
value=1024, interactive=True)
|
| 235 |
+
prompt = gr.Text(
|
| 236 |
+
label="Prompt", value="a photo of a cat", interactive=True)
|
| 237 |
+
seed = gr.Number(label="Seed", value=3413, interactive=True)
|
| 238 |
+
generate_2d_btn = gr.Button(value="Generate 2D Images")
|
| 239 |
+
|
| 240 |
+
with gr.Row():
|
| 241 |
+
generated_images = gr.Gallery(height=1024)
|
| 242 |
+
|
| 243 |
+
with gr.Row():
|
| 244 |
+
selected_image = gr.Image(
|
| 245 |
+
label="Selected Image",
|
| 246 |
image_mode="RGBA",
|
| 247 |
type="pil",
|
| 248 |
interactive=False
|
| 249 |
)
|
| 250 |
+
|
| 251 |
with gr.Row():
|
| 252 |
with gr.Group():
|
| 253 |
do_remove_background = gr.Checkbox(
|
|
|
|
| 258 |
label="Sample Steps", minimum=30, maximum=75, value=75, step=5)
|
| 259 |
|
| 260 |
with gr.Row():
|
| 261 |
+
generate_3d_btn = gr.Button(
|
| 262 |
+
"Generate 3D Model", elem_id="generate", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
with gr.Column():
|
| 265 |
with gr.Row():
|
|
|
|
| 293 |
|
| 294 |
mv_images = gr.State()
|
| 295 |
|
| 296 |
+
generate_2d_btn.click(
|
| 297 |
+
fn=process_image,
|
| 298 |
+
inputs=[num_images, height, width, prompt, seed],
|
| 299 |
+
outputs=[generated_images]
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
generated_images.select(
|
| 303 |
+
fn=lambda x: x,
|
| 304 |
+
inputs=[generated_images],
|
| 305 |
+
outputs=[selected_image]
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
generate_3d_btn.click(fn=check_input_image, inputs=[selected_image]).success(
|
| 309 |
fn=preprocess,
|
| 310 |
+
inputs=[selected_image, do_remove_background],
|
| 311 |
+
outputs=[selected_image],
|
| 312 |
).success(
|
| 313 |
fn=generate_mvs,
|
| 314 |
+
inputs=[selected_image, sample_steps, sample_seed],
|
| 315 |
outputs=[mv_images, mv_show_images]
|
| 316 |
).success(
|
| 317 |
fn=make3d,
|
requirements.txt
CHANGED
|
@@ -12,12 +12,17 @@ tensorboard
|
|
| 12 |
PyMCubes
|
| 13 |
trimesh
|
| 14 |
rembg
|
| 15 |
-
transformers==4.
|
| 16 |
-
diffusers==0.
|
| 17 |
bitsandbytes
|
| 18 |
imageio[ffmpeg]
|
| 19 |
xatlas
|
| 20 |
plyfile
|
| 21 |
xformers==0.0.22.post7
|
| 22 |
git+https://github.com/NVlabs/nvdiffrast/
|
| 23 |
-
huggingface-hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
PyMCubes
|
| 13 |
trimesh
|
| 14 |
rembg
|
| 15 |
+
transformers==4.38.2
|
| 16 |
+
diffusers==0.25.0
|
| 17 |
bitsandbytes
|
| 18 |
imageio[ffmpeg]
|
| 19 |
xatlas
|
| 20 |
plyfile
|
| 21 |
xformers==0.0.22.post7
|
| 22 |
git+https://github.com/NVlabs/nvdiffrast/
|
| 23 |
+
huggingface-hub
|
| 24 |
+
|
| 25 |
+
httpx==0.23.0
|
| 26 |
+
flask
|
| 27 |
+
pillow
|
| 28 |
+
safetensors
|