import gradio as gr from fastai.vision.all import * import timm import random import pickle infile = open('gamename_dict.pkl','rb') game_name_dict = pickle.load(infile) infile.close() learn=load_learner('convnext_nano_4freeze_5epochs_on_jpg_26error.pkl') categories=learn.dls.vocab categories=[game_name_dict[gn] for gn in categories] def recognize_game(img): img= PILImage.create(img) pred,idx,probs=learn.predict(img) return pred,str(100*float(dict(zip(categories, probs))[pred]))[:4]+"%" def recognize_game_all(img): img= PILImage.create(img) pred,idx,probs=learn.predict(img) img.save(pred+str(random.randrange(1,10000))+'.jpg') return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(224,224)) label = gr.outputs.Label(num_top_classes=48) title= 'A Game For That - Gamification Using Snapshot Images' examples = ['1.1.jpg','1.2.jpg','2.jpg','3.jpg','4.jpg', '5.jpg' ] iface = gr.Interface( fn=recognize_game_all, inputs=image, outputs=label, title=title, examples=examples) #iface.launch(inline=False) iface.launch(debug=True)