import gradio as gr import moviepy.video.io.ImageSequenceClip from PIL import Image from pydub import AudioSegment from moviepy.editor import ImageSequenceClip, VideoFileClip, AudioFileClip import numpy as np import os from mutagen.mp3 import MP3 import cv2 from dotenv import load_dotenv from transformers import pipeline # Load environment variables load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") def resize(img_list): resize_img_list = [] for item in img_list: im = Image.open(item) imResize = im.resize((256, 256), Image.LANCZOS) resize_img_list.append(np.array(imResize)) return resize_img_list def merge_audio_video(entities_num, resize_img_list, text_input): speech = text2speech(text_input) wav_audio = AudioSegment.from_file(speech, "flac") wav_audio.export("audio.mp3", format="mp3") audio_length = int(MP3("audio.mp3").info.length) fps = entities_num / audio_length fps = float(format(fps, '.5f')) clip = ImageSequenceClip(resize_img_list, fps=fps) clip.write_videofile('my_vid_tmp.mp4') videoclip = VideoFileClip('my_vid_tmp.mp4') audioclip = AudioFileClip('audio.mp3') mergedclip = videoclip.set_audio(audioclip) return mergedclip def text2speech(text): # Generate speech from text using FastSpeech2 speech_output = fastspeech(text) # Save the output as a .flac file (assuming the output is in numpy format) with open("speech_output.flac", "wb") as f: f.write(speech_output["audio"]) return "speech_output.flac" # Load FastSpeech2 model from Hugging Face directly fastspeech = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech", use_auth_token=HF_TOKEN) def engine(text_input): ner = gr.Interface.load("huggingface/flair/ner-english-ontonotes-large", api_key=HF_TOKEN) entities = ner(text_input) entities = [tupl for tupl in entities if None not in tupl] entities_num = len(entities) img_list = [] latentdiffusion = gr.Interface.load("spaces/multimodalart/latentdiffusion", api_key=HF_TOKEN) for ent in entities: img = latentdiffusion(ent[0], '50', '256', '256', '1', 10)[0] img_list.append(img) resize_img_list = resize(img_list) mergedclip = merge_audio_video(entities_num, resize_img_list, text_input) mergedclip.to_videofile('mergedvideo.mp4') return 'mergedvideo.mp4' app = gr.Interface( fn=engine, inputs=gr.Textbox(lines=5, label="Input Text"), outputs=gr.Video(label='Final Merged Video'), description="