File size: 3,457 Bytes
553d692 4081be9 911163c d56f2c2 553d692 911163c 4081be9 553d692 911163c be2d971 4081be9 911163c 553d692 911163c 553d692 be2d971 553d692 4081be9 911163c 4081be9 911163c 553d692 4081be9 911163c 4081be9 911163c 4081be9 553d692 4081be9 911163c 4081be9 553d692 4081be9 553d692 911163c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import streamlit as st
import pandas as pd
import os
import glob
# Cache the loading of specialties and state files for efficiency
@st.cache_resource
def load_specialties(csv_file='Provider-Specialty.csv'):
return pd.read_csv(csv_file)
@st.cache_resource
def find_state_files():
return [file for file in glob.glob('./*.csv') if len(os.path.basename(file).split('.')[0]) == 2]
# Load the provider specialty dataset
specialties = load_specialties()
# User interface for specialty selection
st.title('Provider Specialty Analyzer π')
# Markdown outline with emojis for specialty fields
st.markdown('''
## Specialty Fields Description π
- **Code**: Unique identifier for the specialty π
- **Grouping**: General category of the specialty π·οΈ
- **Classification**: Specific type of practice within the grouping π―
- **Specialization**: Further refinement of the classification if applicable π
- **Definition**: Brief description of the specialty π
- **Notes**: Additional information or updates about the specialty ποΈ
- **Display Name**: Common name of the specialty π·οΈ
- **Section**: Indicates the section of healthcare it belongs to π
''')
# Dropdown for selecting a specialty
specialty_options = specialties['Display Name'].unique()
selected_specialty = st.selectbox('Select a Specialty π©Ί', options=specialty_options)
# Display specialties matching the selected option or search keyword
search_keyword = st.text_input('Or search for a keyword in specialties π')
if search_keyword:
filtered_specialties = specialties[specialties.apply(lambda row: row.astype(str).str.contains(search_keyword, case=False).any(), axis=1)]
else:
filtered_specialties = specialties[specialties['Display Name'] == selected_specialty]
st.dataframe(filtered_specialties)
# State selection UI with MN as the default option for testing
state_files = find_state_files()
state_options = sorted([os.path.basename(file).split('.')[0] for file in state_files])
selected_state = st.selectbox('Select a State (optional) πΊοΈ', options=state_options, index=state_options.index('MN') if 'MN' in state_options else 0)
use_specific_state = st.checkbox('Filter by selected state only? β
', value=True)
# Function to process state files and match taxonomy codes
def process_files(specialty_codes, specific_state='MN'):
results = []
file_to_process = f'./{specific_state}.csv' if use_specific_state else state_files
for file in [file_to_process] if use_specific_state else state_files:
state_df = pd.read_csv(file, header=None) # Assume no header for simplicity
for code in specialty_codes:
# Filter rows where the 48th column matches the specialty code
filtered_df = state_df[state_df[47] == code]
if not filtered_df.empty:
results.append((os.path.basename(file).replace('.csv', ''), filtered_df))
return results
# Button to initiate analysis
if st.button('Analyze Text Files for Selected Specialty π'):
specialty_codes = filtered_specialties['Code'].unique()
state_data = process_files(specialty_codes, selected_state if use_specific_state else 'MN')
if state_data:
for state, df in state_data:
st.subheader(f"Providers in {state} with Specialty '{selected_specialty}':")
st.dataframe(df)
else:
st.write("No matching records found in text files for the selected specialty.")
|