File size: 3,456 Bytes
58bcf0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import streamlit as st
import pandas as pd
import os
import glob

# Cache the loading of specialties and state files for efficiency
@st.cache_resource
def load_specialties(csv_file='Provider-Specialty.csv'):
    return pd.read_csv(csv_file)

@st.cache_resource
def find_state_files():
    return [file for file in glob.glob('./*.csv') if len(os.path.basename(file).split('.')[0]) == 2]

# Load the provider specialty dataset
specialties = load_specialties()

# User interface for specialty selection
st.title('Provider Specialty Analyzer πŸ“Š')

# Markdown outline with emojis for specialty fields
st.markdown('''
## Specialty Fields Description πŸ“
- **Code**: Unique identifier for the specialty πŸ†”
- **Grouping**: General category of the specialty 🏷️
- **Classification**: Specific type of practice within the grouping 🎯
- **Specialization**: Further refinement of the classification if applicable πŸ”
- **Definition**: Brief description of the specialty πŸ“–
- **Notes**: Additional information or updates about the specialty πŸ—’οΈ
- **Display Name**: Common name of the specialty 🏷️
- **Section**: Indicates the section of healthcare it belongs to πŸ“š
''')

# Dropdown for selecting a specialty
specialty_options = specialties['Display Name'].unique()
selected_specialty = st.selectbox('Select a Specialty 🩺', options=specialty_options)

# Display specialties matching the selected option or search keyword
search_keyword = st.text_input('Or search for a keyword in specialties πŸ”')
if search_keyword:
    filtered_specialties = specialties[specialties.apply(lambda row: row.astype(str).str.contains(search_keyword, case=False).any(), axis=1)]
else:
    filtered_specialties = specialties[specialties['Display Name'] == selected_specialty]

st.dataframe(filtered_specialties)

# State selection UI with MN as the default option for testing
state_files = find_state_files()
state_options = sorted([os.path.basename(file).split('.')[0] for file in state_files])
selected_state = st.selectbox('Select a State (optional) πŸ—ΊοΈ', options=state_options, index=state_options.index('MN') if 'MN' in state_options else 0)
use_specific_state = st.checkbox('Filter by selected state only? βœ…', value=True)

# Function to process state files and match taxonomy codes
def process_files(specialty_codes, specific_state='MN'):
    results = []
    file_to_process = f'./{specific_state}.csv' if use_specific_state else state_files
    
    for file in [file_to_process] if use_specific_state else state_files:
        state_df = pd.read_csv(file, header=None)  # Assume no header for simplicity
        for code in specialty_codes:
            # Filter rows where the 48th column matches the specialty code
            filtered_df = state_df[state_df[47] == code]
            if not filtered_df.empty:
                results.append((os.path.basename(file).replace('.csv', ''), filtered_df))
    
    return results

# Button to initiate analysis
if st.button('Analyze Text Files for Selected Specialty πŸ”'):
    specialty_codes = filtered_specialties['Code'].unique()
    state_data = process_files(specialty_codes, selected_state if use_specific_state else 'MN')
    if state_data:
        for state, df in state_data:
            st.subheader(f"Providers in {state} with Specialty '{selected_specialty}':")
            st.dataframe(df)
    else:
        st.write("No matching records found in text files for the selected specialty.")