Update app.py
Browse files
app.py
CHANGED
@@ -12,13 +12,11 @@ def load_specialties(csv_file='Provider-Specialty.csv'):
|
|
12 |
def find_state_files():
|
13 |
return [file for file in glob.glob('./*.csv') if len(os.path.basename(file).split('.')[0]) == 2]
|
14 |
|
15 |
-
# Load the provider specialty dataset
|
16 |
specialties = load_specialties()
|
17 |
|
18 |
-
#
|
19 |
st.title('Provider Specialty Analyzer π')
|
20 |
|
21 |
-
# Markdown outline with emojis for specialty fields
|
22 |
st.markdown('''
|
23 |
## Specialty Fields Description π
|
24 |
- **Code**: Unique identifier for the specialty π
|
@@ -31,11 +29,9 @@ st.markdown('''
|
|
31 |
- **Section**: Indicates the section of healthcare it belongs to π
|
32 |
''')
|
33 |
|
34 |
-
# Dropdown for selecting a specialty
|
35 |
specialty_options = specialties['Display Name'].unique()
|
36 |
selected_specialty = st.selectbox('Select a Specialty π©Ί', options=specialty_options)
|
37 |
|
38 |
-
# Display specialties matching the selected option or search keyword
|
39 |
search_keyword = st.text_input('Or search for a keyword in specialties π')
|
40 |
if search_keyword:
|
41 |
filtered_specialties = specialties[specialties.apply(lambda row: row.astype(str).str.contains(search_keyword, case=False).any(), axis=1)]
|
@@ -44,34 +40,31 @@ else:
|
|
44 |
|
45 |
st.dataframe(filtered_specialties)
|
46 |
|
47 |
-
# State selection
|
48 |
state_files = find_state_files()
|
49 |
state_options = sorted([os.path.basename(file).split('.')[0] for file in state_files])
|
50 |
selected_state = st.selectbox('Select a State (optional) πΊοΈ', options=state_options, index=state_options.index('MN') if 'MN' in state_options else 0)
|
51 |
use_specific_state = st.checkbox('Filter by selected state only? β
', value=True)
|
52 |
|
53 |
-
# Function to process state files and match taxonomy codes
|
54 |
def process_files(specialty_codes, specific_state='MN'):
|
55 |
results = []
|
56 |
file_to_process = f'./{specific_state}.csv' if use_specific_state else state_files
|
57 |
|
58 |
for file in [file_to_process] if use_specific_state else state_files:
|
59 |
-
state_df = pd.read_csv(file, header=None) #
|
60 |
for code in specialty_codes:
|
61 |
-
|
62 |
-
filtered_df = state_df[state_df[47] == code]
|
63 |
if not filtered_df.empty:
|
64 |
results.append((os.path.basename(file).replace('.csv', ''), filtered_df))
|
65 |
|
66 |
return results
|
67 |
|
68 |
-
# Button to initiate analysis
|
69 |
if st.button('Analyze Text Files for Selected Specialty π'):
|
70 |
-
specialty_codes = filtered_specialties['Code'].
|
71 |
state_data = process_files(specialty_codes, selected_state if use_specific_state else 'MN')
|
72 |
if state_data:
|
73 |
for state, df in state_data:
|
74 |
-
st.subheader(f"Providers in {state} with
|
75 |
st.dataframe(df)
|
76 |
else:
|
77 |
-
st.write("No matching records found in text files for the selected
|
|
|
12 |
def find_state_files():
|
13 |
return [file for file in glob.glob('./*.csv') if len(os.path.basename(file).split('.')[0]) == 2]
|
14 |
|
|
|
15 |
specialties = load_specialties()
|
16 |
|
17 |
+
# UI for specialty selection
|
18 |
st.title('Provider Specialty Analyzer π')
|
19 |
|
|
|
20 |
st.markdown('''
|
21 |
## Specialty Fields Description π
|
22 |
- **Code**: Unique identifier for the specialty π
|
|
|
29 |
- **Section**: Indicates the section of healthcare it belongs to π
|
30 |
''')
|
31 |
|
|
|
32 |
specialty_options = specialties['Display Name'].unique()
|
33 |
selected_specialty = st.selectbox('Select a Specialty π©Ί', options=specialty_options)
|
34 |
|
|
|
35 |
search_keyword = st.text_input('Or search for a keyword in specialties π')
|
36 |
if search_keyword:
|
37 |
filtered_specialties = specialties[specialties.apply(lambda row: row.astype(str).str.contains(search_keyword, case=False).any(), axis=1)]
|
|
|
40 |
|
41 |
st.dataframe(filtered_specialties)
|
42 |
|
43 |
+
# State selection with MN as default for testing
|
44 |
state_files = find_state_files()
|
45 |
state_options = sorted([os.path.basename(file).split('.')[0] for file in state_files])
|
46 |
selected_state = st.selectbox('Select a State (optional) πΊοΈ', options=state_options, index=state_options.index('MN') if 'MN' in state_options else 0)
|
47 |
use_specific_state = st.checkbox('Filter by selected state only? β
', value=True)
|
48 |
|
|
|
49 |
def process_files(specialty_codes, specific_state='MN'):
|
50 |
results = []
|
51 |
file_to_process = f'./{specific_state}.csv' if use_specific_state else state_files
|
52 |
|
53 |
for file in [file_to_process] if use_specific_state else state_files:
|
54 |
+
state_df = pd.read_csv(file, header=None) # Assuming no header for simplicity
|
55 |
for code in specialty_codes:
|
56 |
+
filtered_df = state_df[state_df[47].isin(specialty_codes)] # Match against 48th column
|
|
|
57 |
if not filtered_df.empty:
|
58 |
results.append((os.path.basename(file).replace('.csv', ''), filtered_df))
|
59 |
|
60 |
return results
|
61 |
|
|
|
62 |
if st.button('Analyze Text Files for Selected Specialty π'):
|
63 |
+
specialty_codes = filtered_specialties['Code'].tolist()
|
64 |
state_data = process_files(specialty_codes, selected_state if use_specific_state else 'MN')
|
65 |
if state_data:
|
66 |
for state, df in state_data:
|
67 |
+
st.subheader(f"Providers in {state} with Specialties related to '{search_keyword}':")
|
68 |
st.dataframe(df)
|
69 |
else:
|
70 |
+
st.write("No matching records found in text files for the selected specialties.")
|