Update app.py
Browse files
app.py
CHANGED
@@ -90,17 +90,17 @@ specialties = load_specialties()
|
|
90 |
st.markdown("# π©Ίπ Care Team Finder ")
|
91 |
st.markdown("#### Search for Care Providers by Specialty and Location")
|
92 |
|
93 |
-
if st.expander('π©Ί Understand Provider Specialties π', expanded=False):
|
94 |
st.markdown('''
|
95 |
-
## Discover Care Providers by Specialty & Location: Quick Guide
|
96 |
-
- **Code**: Unique ID identifies each specialty clearly. π
|
97 |
-
- **Grouping**: Broad category umbrella for general expertise area. π·οΈ
|
98 |
-
- **Classification**: Specifies type of practice within broader category. π―
|
99 |
-
- **Specialization**: Details focus within classification for precise expertise. π
|
100 |
-
- **Definition**: Concise overview of the specialty's scope. π
|
101 |
-
- **Notes**: Extra information or recent updates provided. ποΈ
|
102 |
-
- **Display Name**: Commonly recognized name of the specialty. π·οΈ
|
103 |
-
- **Section**: Healthcare segment the specialty belongs to. π
|
104 |
''')
|
105 |
|
106 |
# Allows users to select or search for a specialty
|
@@ -134,12 +134,14 @@ def process_files(specialty_codes, specific_state='MN'):
|
|
134 |
#state_df = pd.read_csv(file, header=0) # Assuming no header for simplicity
|
135 |
|
136 |
for code in specialty_codes:
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
143 |
return results
|
144 |
|
145 |
# Button to initiate the analysis
|
|
|
90 |
st.markdown("# π©Ίπ Care Team Finder ")
|
91 |
st.markdown("#### Search for Care Providers by Specialty and Location")
|
92 |
|
93 |
+
if st.expander(label='π©Ί Understand Provider Specialties π', expanded=False):
|
94 |
st.markdown('''
|
95 |
+
## Discover Care Providers by Specialty & Location: Quick Guide
|
96 |
+
- **Code**: Unique ID identifies each specialty clearly. π
|
97 |
+
- **Grouping**: Broad category umbrella for general expertise area. π·οΈ
|
98 |
+
- **Classification**: Specifies type of practice within broader category. π―
|
99 |
+
- **Specialization**: Details focus within classification for precise expertise. π
|
100 |
+
- **Definition**: Concise overview of the specialty's scope. π
|
101 |
+
- **Notes**: Extra information or recent updates provided. ποΈ
|
102 |
+
- **Display Name**: Commonly recognized name of the specialty. π·οΈ
|
103 |
+
- **Section**: Healthcare segment the specialty belongs to. π
|
104 |
''')
|
105 |
|
106 |
# Allows users to select or search for a specialty
|
|
|
134 |
#state_df = pd.read_csv(file, header=0) # Assuming no header for simplicity
|
135 |
|
136 |
for code in specialty_codes:
|
137 |
+
try:
|
138 |
+
filtered_df = state_df[state_df[47].isin([code])] # Match against 48th column, adjust as needed
|
139 |
+
if not filtered_df.empty:
|
140 |
+
# Enhance the display to include 'Code', 'Grouping', and 'Classification' information
|
141 |
+
display_info = specialties[specialties['Code'] == code][['Code', 'Grouping', 'Classification']].iloc[0].to_dict()
|
142 |
+
results.append((os.path.basename(file).replace('.csv', ''), display_info, filtered_df))
|
143 |
+
except:
|
144 |
+
st.write('.')
|
145 |
return results
|
146 |
|
147 |
# Button to initiate the analysis
|