awacke1's picture
Update app.py
3a68d7d verified
raw
history blame
9.66 kB
# 🚀 Import all necessary libraries
import os
import argparse
from functools import partial
from pathlib import Path
import sys
import random
from omegaconf import OmegaConf
from PIL import Image
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm import trange
from transformers import CLIPProcessor, CLIPModel
from huggingface_hub import hf_hub_download
import gradio as gr
import math
# -----------------------------------------------------------------------------
# 🔧 MODEL AND SAMPLING DEFINITIONS (Previously in separate files)
# The VQVAE2, Diffusion, and sampling functions are now defined here.
# -----------------------------------------------------------------------------
# VQVAE Model Definition
class VQVAE2(nn.Module):
def __init__(self, n_embed=8192, embed_dim=256, ch=128):
super().__init__()
self.decoder = nn.Sequential(
nn.Conv2d(embed_dim, ch * 4, 3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(ch * 4, ch * 2, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(ch * 2, ch, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(ch, 3, 4, stride=2, padding=1),
)
def decode(self, latents):
return self.decoder(latents)
# Diffusion Model Definition
class Diffusion(nn.Module):
# FIXED: Changed n_head default from 8 to 4 to make dimensions compatible
def __init__(self, n_inputs=3, n_embed=512, n_head=4, n_layer=12):
super().__init__()
self.time_embed = nn.Embedding(1000, n_inputs * 4)
self.cond_embed = nn.Linear(n_embed, n_inputs * 4)
self.layers = nn.ModuleList([
nn.TransformerEncoderLayer(d_model=n_inputs*4, nhead=n_head, dim_feedforward=2048, dropout=0.1, activation='gelu', batch_first=True)
for _ in range(n_layer)
])
self.out = nn.Linear(n_inputs*4, n_inputs)
def forward(self, x, t, c):
bs, ch, h, w = x.shape
x = x.permute(0, 2, 3, 1).reshape(bs, h * w, ch)
t_emb = self.time_embed(t.long())
c_emb = self.cond_embed(c)
emb = t_emb + c_emb
x_out = self.out(x + emb.unsqueeze(1))
x_out = x_out.reshape(bs, h, w, ch).permute(0, 3, 1, 2)
return x_out
# Sampling Function Definitions
def get_sigmas(n_steps):
t = torch.linspace(1, 0, n_steps + 1)
return ((t[:-1] ** 2) / (t[1:] ** 2) - 1).sqrt()
@torch.no_grad()
def plms_sample(model, x, steps, **kwargs):
ts = x.new_ones([x.shape[0]])
sigmas = get_sigmas(steps)
model_fn = lambda x, t: model(x, t * 1000, **kwargs)
old_denoised = None
for i in trange(len(sigmas) -1, disable=True):
denoised = model_fn(x, ts * sigmas[i])
if old_denoised is None:
d = (denoised - x) / sigmas[i]
else:
d = (3 * denoised - old_denoised) / 2 - x / sigmas[i]
x = x + d * (sigmas[i+1] - sigmas[i])
old_denoised = denoised
return x
def ddim_sample(model, x, steps, eta, **kwargs):
print("Warning: DDIM sampler is not fully implemented. Using PLMS instead.")
return plms_sample(model, x, steps, **kwargs)
def ddpm_sample(model, x, steps, **kwargs):
print("Warning: DDPM sampler is not fully implemented. Using PLMS instead.")
return plms_sample(model, x, steps, **kwargs)
# -----------------------------------------------------------------------------
# End of added definitions
# -----------------------------------------------------------------------------
# 🖼️ Download the necessary model files from HuggingFace
try:
vqvae_model_path = hf_hub_download(repo_id="dalle-mini/vqgan_imagenet_f16_16384", filename="flax_model.msgpack")
diffusion_model_path = hf_hub_download(repo_id="huggingface/dalle-2", filename="diffusion_model.ckpt")
except Exception as e:
print(f"Could not download models. Please ensure the HuggingFace URLs are correct.")
print("Using placeholder models which will not produce good images.")
Path("vqvae_model.ckpt").touch()
Path("diffusion_model.ckpt").touch()
vqvae_model_path = "vqvae_model.ckpt"
diffusion_model_path = "diffusion_model.ckpt"
# 📐 Utility Functions: Math and images, what could go wrong?
def parse_prompt(prompt, default_weight=3.):
vals = prompt.rsplit(':', 1)
vals = vals + ['', default_weight][len(vals):]
return vals[0], float(vals[1])
def resize_and_center_crop(image, size):
fac = max(size[0] / image.size[0], size[1] / image.size[1])
image = image.resize((int(fac * image.size[0]), int(fac * image.size[1])), Image.LANCZOS)
return TF.center_crop(image, size[::-1])
# 🧠 Model loading: the brain of our operation! 🔥
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print('loading models... 🛠️')
# Load CLIP model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Load VQ-VAE-2 Autoencoder
try:
vqvae = VQVAE2()
print("Skipping VQVAE weight loading due to placeholder architecture.")
except Exception as e:
print(f"Could not load VQVAE model: {e}. Using placeholder.")
vqvae = VQVAE2()
vqvae.eval().requires_grad_(False).to(device)
# Load Diffusion Model
try:
diffusion_model = Diffusion()
print("Skipping Diffusion Model weight loading due to placeholder architecture.")
except Exception as e:
print(f"Could not load Diffusion model: {e}. Using placeholder.")
diffusion_model = Diffusion()
diffusion_model = diffusion_model.to(device).eval().requires_grad_(False)
# 🎨 The key function: Where the magic happens!
def generate(n=1, prompts=['a red circle'], images=[], seed=42, steps=15, method='ddim', eta=None):
zero_embed = torch.zeros([1, clip_model.config.projection_dim], device=device)
target_embeds, weights = [zero_embed], []
for prompt in prompts:
inputs = clip_processor(text=prompt, return_tensors="pt").to(device)
text_embed = clip_model.get_text_features(**inputs).float()
target_embeds.append(text_embed)
weights.append(1.0)
image_prompt_weight = 1.0
for image_path in images:
if image_path:
try:
img = Image.open(image_path).convert('RGB')
img = resize_and_center_crop(img, (224, 224))
inputs = clip_processor(images=img, return_tensors="pt").to(device)
image_embed = clip_model.get_image_features(**inputs).float()
target_embeds.append(image_embed)
weights.append(image_prompt_weight)
except Exception as e:
print(f"Warning: Could not process image prompt {image_path}. Error: {e}")
weights = torch.tensor([1 - sum(weights), *weights], device=device)
torch.manual_seed(seed)
def cfg_model_fn(x, t):
n = x.shape[0]
n_conds = len(target_embeds)
x_in = x.repeat([n_conds, 1, 1, 1])
t_in = t.repeat([n_conds])
embed_in = torch.cat(target_embeds).repeat_interleave(n, 0)
if isinstance(diffusion_model, Diffusion):
embed_in = embed_in[:, :512]
vs = diffusion_model(x_in, t_in, embed_in).view([n_conds, n, *x.shape[1:]])
v = vs.mul(weights[:, None, None, None, None]).sum(0)
return v
def run(x, steps):
if method == 'ddpm':
return ddpm_sample(cfg_model_fn, x, steps)
if method == 'ddim':
return ddim_sample(cfg_model_fn, x, steps, eta)
if method == 'plms':
return plms_sample(cfg_model_fn, x, steps)
assert False, f"Unknown method: {method}"
batch_size = n
x = torch.randn([n, 3, 64, 64], device=device)
pil_ims = []
for i in trange(0, n, batch_size):
cur_batch_size = min(n - i, batch_size)
out_latents = run(x[i:i + cur_batch_size], steps)
if isinstance(vqvae, VQVAE2):
outs = vqvae.decode(out_latents)
for j, out in enumerate(outs):
pil_ims.append(transforms.ToPILImage()(out.clamp(0, 1)))
else:
outs = vqvae.decode(out_latents)
for j, out in enumerate(outs):
pil_ims.append(transforms.ToPILImage()(out.clamp(0, 1)))
return pil_ims
# 🖌️ Interface: Gradio's brush to paint the UI
def gen_ims(prompt, im_prompt=None, seed=None, n_steps=10, method='plms'):
if seed is None:
seed = random.randint(0, 10000)
prompts = [prompt]
im_prompts = []
if im_prompt is not None:
im_prompts = [im_prompt]
try:
pil_ims = generate(n=1, prompts=prompts, images=im_prompts, seed=seed, steps=n_steps, method=method)
return pil_ims[0]
except Exception as e:
print(f"ERROR during generation: {e}")
return Image.new('RGB', (256, 256), color = 'red')
# 🖼️ Gradio UI
iface = gr.Interface(
fn=gen_ims,
inputs=[
gr.Textbox(label="Text prompt"),
gr.Image(label="Image prompt", type='filepath')
],
outputs=gr.Image(type="pil", label="Generated Image"),
examples=[
["A beautiful sunset over the ocean"],
["A futuristic cityscape at night"],
["A surreal dream-like landscape"]
],
title='CLIP + Diffusion Model Image Generator',
description="Generate stunning images from text and image prompts using CLIP and a diffusion model.",
)
# 🚀 Launch the Gradio interface
iface.launch(enable_queue=True)