awacke1 commited on
Commit
72e6740
·
verified ·
1 Parent(s): 4ab67fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -8
app.py CHANGED
@@ -14,9 +14,7 @@ from torchvision import transforms
14
  from torchvision.transforms import functional as TF
15
  from tqdm import trange
16
  from transformers import CLIPProcessor, CLIPModel
17
- # from vqvae import VQVAE2 # Autoencoder replacement - REMOVED
18
- # from diffusion_models import Diffusion # Swapped Diffusion model for DALL·E 2 based model - REMOVED
19
- from huggingface_hub import hf_hub_url, cached_download
20
  import gradio as gr # 🎨 The magic canvas for AI-powered image generation!
21
  import math
22
 
@@ -130,8 +128,9 @@ def ddpm_sample(model, x, steps, **kwargs):
130
  # NOTE: The HuggingFace URLs you provided might be placeholders.
131
  # Make sure these point to the correct model files.
132
  try:
133
- vqvae_model_path = cached_download(hf_hub_url("dalle-mini/vqgan_imagenet_f16_16384", filename="flax_model.msgpack")) # Using a known public VQGAN
134
- diffusion_model_path = cached_download(hf_hub_url("huggingface/dalle-2", filename="diffusion_model.ckpt")) # This URL is likely incorrect
 
135
  except Exception as e:
136
  print(f"Could not download models. Please ensure the HuggingFace URLs are correct.")
137
  print("Using placeholder models which will not produce good images.")
@@ -213,7 +212,7 @@ def generate(n=1, prompts=['a red circle'], images=[], seed=42, steps=15, method
213
  target_embeds.append(text_embed)
214
  weights.append(1.0)
215
 
216
- # **FIXED**: Correctly process image prompts from Gradio
217
  # Assign a default weight for image prompts
218
  image_prompt_weight = 1.0
219
  for image_path in images:
@@ -250,7 +249,6 @@ def generate(n=1, prompts=['a red circle'], images=[], seed=42, steps=15, method
250
  return v
251
 
252
  # 🎞️ Run the sampler to generate images
253
- # **FIXED**: Call sampling functions directly without the 'sampling.' prefix
254
  def run(x, steps):
255
  if method == 'ddpm':
256
  return ddpm_sample(cfg_model_fn, x, steps)
@@ -310,7 +308,6 @@ iface = gr.Interface(
310
  fn=gen_ims,
311
  inputs=[
312
  gr.Textbox(label="Text prompt"),
313
- # **FIXED**: Removed deprecated 'optional=True' argument
314
  gr.Image(label="Image prompt", type='filepath')
315
  ],
316
  outputs=gr.Image(type="pil", label="Generated Image"),
 
14
  from torchvision.transforms import functional as TF
15
  from tqdm import trange
16
  from transformers import CLIPProcessor, CLIPModel
17
+ from huggingface_hub import hf_hub_download # FIXED: Replaced deprecated function
 
 
18
  import gradio as gr # 🎨 The magic canvas for AI-powered image generation!
19
  import math
20
 
 
128
  # NOTE: The HuggingFace URLs you provided might be placeholders.
129
  # Make sure these point to the correct model files.
130
  try:
131
+ # FIXED: Using the new hf_hub_download function with keyword arguments
132
+ vqvae_model_path = hf_hub_download(repo_id="dalle-mini/vqgan_imagenet_f16_16384", filename="flax_model.msgpack")
133
+ diffusion_model_path = hf_hub_download(repo_id="huggingface/dalle-2", filename="diffusion_model.ckpt")
134
  except Exception as e:
135
  print(f"Could not download models. Please ensure the HuggingFace URLs are correct.")
136
  print("Using placeholder models which will not produce good images.")
 
212
  target_embeds.append(text_embed)
213
  weights.append(1.0)
214
 
215
+ # Correctly process image prompts from Gradio
216
  # Assign a default weight for image prompts
217
  image_prompt_weight = 1.0
218
  for image_path in images:
 
249
  return v
250
 
251
  # 🎞️ Run the sampler to generate images
 
252
  def run(x, steps):
253
  if method == 'ddpm':
254
  return ddpm_sample(cfg_model_fn, x, steps)
 
308
  fn=gen_ims,
309
  inputs=[
310
  gr.Textbox(label="Text prompt"),
 
311
  gr.Image(label="Image prompt", type='filepath')
312
  ],
313
  outputs=gr.Image(type="pil", label="Generated Image"),