|
import torch |
|
import transformers |
|
import gradio as gr |
|
from ragatouille import RAGPretrainedModel |
|
from huggingface_hub import InferenceClient |
|
import re |
|
from datetime import datetime |
|
import json |
|
import arxiv |
|
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search |
|
import os |
|
import glob |
|
|
|
|
|
retrieve_results = 20 |
|
show_examples = True |
|
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] |
|
|
|
|
|
generate_kwargs = dict( |
|
temperature = None, |
|
max_new_tokens = 512, |
|
top_p = None, |
|
do_sample = False, |
|
) |
|
|
|
|
|
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert") |
|
|
|
try: |
|
gr.Info("ποΈ Setting up the knowledge retriever, please wait... π°οΈ") |
|
rag_initial_output = RAG.search("What is Generative AI in Healthcare?", k = 1) |
|
gr.Info("π Retriever is up and running! Time to flex those brain muscles! πͺπ§ ") |
|
except: |
|
gr.Warning("π± Oh no! The retriever took a coffee break. Try again later! β") |
|
|
|
|
|
mark_text = '# π©Ίπ Search Results\n' |
|
header_text = "## πArxivπPaperπSearch - π΅οΈββοΈ Uncover, π Summarize, and π§© Solve π¬ Research π€β Puzzles βοΈ with π Papers and π€ RAG AI π§ \n" |
|
|
|
|
|
try: |
|
with open("README.md", "r") as f: |
|
mdfile = f.read() |
|
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}' |
|
match = re.search(date_pattern, mdfile) |
|
date = match.group().split(': ')[1] |
|
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y') |
|
header_text += f'Index Last Updated: {formatted_date}\n' |
|
index_info = f"Semantic Search - up to {formatted_date}" |
|
except: |
|
index_info = "Semantic Search" |
|
|
|
database_choices = [index_info, 'Arxiv Search - Latest - (EXPERIMENTAL)'] |
|
|
|
|
|
arx_client = arxiv.Client() |
|
is_arxiv_available = True |
|
check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results) |
|
if len(check_arxiv_result) == 0: |
|
is_arxiv_available = False |
|
print("π΄ Arxiv search is taking a nap, switching to default search ...") |
|
database_choices = [index_info] |
|
|
|
|
|
sample_outputs = { |
|
'output_placeholder': 'The LLM will provide an answer to your question here...', |
|
'search_placeholder': ''' |
|
1. What is MoE? |
|
2. What are Multi Agent Systems? |
|
3. What is Self Rewarding AI? |
|
4. What is Semantic and Episodic memory? |
|
5. What is AutoGen? |
|
6. What is ChatDev? |
|
7. What is Omniverse? |
|
8. What is Lumiere? |
|
9. What is SORA? |
|
''' |
|
} |
|
|
|
output_placeholder = sample_outputs['output_placeholder'] |
|
md_text_initial = sample_outputs['search_placeholder'] |
|
|
|
|
|
def rag_cleaner(inp): |
|
rank = inp['rank'] |
|
title = inp['document_metadata']['title'] |
|
content = inp['content'] |
|
date = inp['document_metadata']['_time'] |
|
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}" |
|
|
|
|
|
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): |
|
if formatted: |
|
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and let's think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates." |
|
message = f"Question: {question}" |
|
|
|
if 'mistralai' in llm_model_picked: |
|
return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]" |
|
elif 'gemma' in llm_model_picked: |
|
return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n" |
|
|
|
return f"Context:\n {context} \n Given the following info, take a deep breath and let's think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n" |
|
|
|
|
|
def get_references(question, retriever, k = retrieve_results): |
|
rag_out = retriever.search(query=question, k=k) |
|
return rag_out |
|
|
|
def get_rag(message): |
|
return get_references(message, RAG) |
|
|
|
|
|
def SaveResponseAndRead(result): |
|
documentHTML5=''' |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>Read It Aloud</title> |
|
<script type="text/javascript"> |
|
function readAloud() { |
|
const text = document.getElementById("textArea").value; |
|
const speech = new SpeechSynthesisUtterance(text); |
|
window.speechSynthesis.speak(speech); |
|
} |
|
</script> |
|
</head> |
|
<body> |
|
<h1>π Read It Aloud</h1> |
|
<textarea id="textArea" rows="10" cols="80"> |
|
''' |
|
documentHTML5 = documentHTML5 + result |
|
documentHTML5 = documentHTML5 + ''' |
|
</textarea> |
|
<br> |
|
<button onclick="readAloud()">π Read Aloud</button> |
|
</body> |
|
</html> |
|
''' |
|
gr.HTML(documentHTML5) |
|
|
|
|
|
|
|
def save_response_as_markdown(question, response): |
|
timestamp = datetime.now().strftime("%Y%m%d%H%M") |
|
filename = f"{timestamp}_{question[:50]}.md" |
|
with open(filename, "w", encoding="utf-8") as f: |
|
f.write(response) |
|
return filename |
|
|
|
def list_markdown_files(): |
|
files = glob.glob("*.md") |
|
files.sort(key=os.path.getmtime, reverse=True) |
|
return [f for f in files if f != "README.md"] |
|
|
|
def delete_file(filename): |
|
if filename != "README.md": |
|
os.remove(filename) |
|
return f"Deleted {filename}" |
|
return "Cannot delete README.md" |
|
|
|
def display_markdown_contents(): |
|
files = list_markdown_files() |
|
output = "" |
|
for file in files: |
|
with open(file, "r", encoding="utf-8") as f: |
|
content = f.read() |
|
output += f"## {file}\n\n```markdown\n{content}\n```\n\n" |
|
return output |
|
|
|
|
|
with gr.Blocks(theme = gr.themes.Soft()) as demo: |
|
header = gr.Markdown(header_text) |
|
|
|
with gr.Group(): |
|
msg = gr.Textbox(label = 'Search', placeholder = 'What is Generative AI in Healthcare?') |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Row(equal_height = True): |
|
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model') |
|
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context") |
|
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source') |
|
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False) |
|
|
|
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder) |
|
input = gr.Textbox(show_label = False, visible = False) |
|
gr_md = gr.Markdown(mark_text + md_text_initial) |
|
|
|
with gr.Tab("Saved Responses"): |
|
refresh_button = gr.Button("π Refresh File List") |
|
file_list = gr.Dropdown(choices=list_markdown_files(), label="Saved Responses") |
|
delete_button = gr.Button("ποΈ Delete Selected File") |
|
markdown_display = gr.Markdown() |
|
|
|
|
|
def update_file_list(): |
|
return gr.Dropdown(choices=list_markdown_files()) |
|
|
|
refresh_button.click(update_file_list, outputs=[file_list]) |
|
delete_button.click(delete_file, inputs=[file_list], outputs=[markdown_display]).then(update_file_list, outputs=[file_list]) |
|
file_list.change(lambda x: open(x, "r", encoding="utf-8").read() if x else "", inputs=[file_list], outputs=[markdown_display]) |
|
|
|
|
|
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): |
|
prompt_text_from_data = "" |
|
database_to_use = database_choice |
|
if database_choice == index_info: |
|
rag_out = get_rag(message) |
|
else: |
|
arxiv_search_success = True |
|
try: |
|
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results) |
|
if len(rag_out) == 0: |
|
arxiv_search_success = False |
|
except: |
|
arxiv_search_success = False |
|
|
|
if not arxiv_search_success: |
|
gr.Warning("π΄ Arxiv Search is taking a siesta, switching to semantic search ...") |
|
rag_out = get_rag(message) |
|
database_to_use = index_info |
|
|
|
md_text_updated = mark_text |
|
for i in range(retrieve_results): |
|
rag_answer = rag_out[i] |
|
if i < llm_results_use: |
|
md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True) |
|
prompt_text_from_data += f"{i+1}. {prompt_text}" |
|
else: |
|
md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use) |
|
md_text_updated += md_text_paper |
|
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked) |
|
return md_text_updated, prompt |
|
|
|
|
|
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False): |
|
model_disabled_text = "LLM Model is taking a vacation. Try again later! ποΈ" |
|
output = "" |
|
|
|
if llm_model_picked == 'None': |
|
if stream_outputs: |
|
for out in model_disabled_text: |
|
output += out |
|
yield output |
|
return output |
|
else: |
|
return model_disabled_text |
|
|
|
client = InferenceClient(llm_model_picked) |
|
try: |
|
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False) |
|
|
|
except: |
|
gr.Warning("π¦ LLM Inference hit a traffic jam! Take a breather and try again later.") |
|
return "" |
|
|
|
if stream_outputs: |
|
for response in stream: |
|
output += response |
|
SaveResponseAndRead(response) |
|
yield output |
|
return output |
|
else: |
|
return stream |
|
|
|
|
|
def process_and_save(message, llm_results_use, database_choice, llm_model_picked): |
|
md_text_updated, prompt = update_with_rag_md(message, llm_results_use, database_choice, llm_model_picked) |
|
llm_response = ask_llm(prompt, llm_model_picked, stream_outputs=False) |
|
full_response = f"Question: {message}\n\nResponse:\n{llm_response}\n\nReferences:\n{md_text_updated}" |
|
filename = save_response_as_markdown(message, full_response) |
|
return md_text_updated, prompt, llm_response, filename |
|
|
|
|
|
msg.submit(process_and_save, [msg, llm_results, database_src, llm_model], [gr_md, input, output_text, file_list]).then(update_file_list, outputs=[file_list]) |
|
|
|
|
|
demo.queue().launch() |