Update app.py
Browse files
app.py
CHANGED
@@ -6,13 +6,15 @@ from huggingface_hub import InferenceClient
|
|
6 |
import re
|
7 |
from datetime import datetime
|
8 |
import json
|
9 |
-
|
10 |
import arxiv
|
11 |
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
|
12 |
|
13 |
retrieve_results = 10
|
14 |
show_examples = False
|
15 |
-
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.
|
|
|
|
|
16 |
|
17 |
generate_kwargs = dict(
|
18 |
temperature = None,
|
@@ -33,8 +35,8 @@ except:
|
|
33 |
gr.Warning("Retriever not working!")
|
34 |
|
35 |
## Header
|
36 |
-
mark_text = '#
|
37 |
-
header_text = "
|
38 |
|
39 |
try:
|
40 |
with open("README.md", "r") as f:
|
@@ -53,7 +55,7 @@ database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
|
|
53 |
## Arxiv API
|
54 |
arx_client = arxiv.Client()
|
55 |
is_arxiv_available = True
|
56 |
-
check_arxiv_result = get_arxiv_live_search("What is
|
57 |
if len(check_arxiv_result) == 0:
|
58 |
is_arxiv_available = False
|
59 |
print("Arxiv search not working, switching to default search ...")
|
@@ -80,7 +82,7 @@ def rag_cleaner(inp):
|
|
80 |
date = inp['document_metadata']['_time']
|
81 |
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
|
82 |
|
83 |
-
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.
|
84 |
if formatted:
|
85 |
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
|
86 |
message = f"Question: {question}"
|
@@ -100,35 +102,6 @@ def get_references(question, retriever, k = retrieve_results):
|
|
100 |
def get_rag(message):
|
101 |
return get_references(message, RAG)
|
102 |
|
103 |
-
def SaveResponseAndRead(result):
|
104 |
-
documentHTML5='''
|
105 |
-
<!DOCTYPE html>
|
106 |
-
<html>
|
107 |
-
<head>
|
108 |
-
<title>Read It Aloud</title>
|
109 |
-
<script type="text/javascript">
|
110 |
-
function readAloud() {
|
111 |
-
const text = document.getElementById("textArea").value;
|
112 |
-
const speech = new SpeechSynthesisUtterance(text);
|
113 |
-
window.speechSynthesis.speak(speech);
|
114 |
-
}
|
115 |
-
</script>
|
116 |
-
</head>
|
117 |
-
<body>
|
118 |
-
<h1>🔊 Read It Aloud</h1>
|
119 |
-
<textarea id="textArea" rows="10" cols="80">
|
120 |
-
'''
|
121 |
-
documentHTML5 = documentHTML5 + result
|
122 |
-
documentHTML5 = documentHTML5 + '''
|
123 |
-
</textarea>
|
124 |
-
<br>
|
125 |
-
<button onclick="readAloud()">🔊 Read Aloud</button>
|
126 |
-
</body>
|
127 |
-
</html>
|
128 |
-
'''
|
129 |
-
gr.HTML(documentHTML5)
|
130 |
-
|
131 |
-
|
132 |
with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
133 |
header = gr.Markdown(header_text)
|
134 |
|
@@ -137,7 +110,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
137 |
|
138 |
with gr.Accordion("Advanced Settings", open=False):
|
139 |
with gr.Row(equal_height = True):
|
140 |
-
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.
|
141 |
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
|
142 |
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
|
143 |
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
|
@@ -146,7 +119,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
146 |
input = gr.Textbox(show_label = False, visible = False)
|
147 |
gr_md = gr.Markdown(mark_text + md_text_initial)
|
148 |
|
149 |
-
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.
|
150 |
prompt_text_from_data = ""
|
151 |
database_to_use = database_choice
|
152 |
if database_choice == index_info:
|
@@ -178,7 +151,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
178 |
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
|
179 |
return md_text_updated, prompt
|
180 |
|
181 |
-
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.
|
182 |
model_disabled_text = "LLM Model is disabled"
|
183 |
output = ""
|
184 |
|
@@ -191,7 +164,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
191 |
else:
|
192 |
return model_disabled_text
|
193 |
|
194 |
-
client = InferenceClient(llm_model_picked)
|
195 |
try:
|
196 |
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
|
197 |
|
@@ -202,7 +175,6 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
202 |
if stream_outputs:
|
203 |
for response in stream:
|
204 |
output += response
|
205 |
-
SaveResponseAndRead(response)
|
206 |
yield output
|
207 |
return output
|
208 |
else:
|
@@ -211,4 +183,4 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
211 |
|
212 |
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
|
213 |
|
214 |
-
demo.queue().launch()
|
|
|
6 |
import re
|
7 |
from datetime import datetime
|
8 |
import json
|
9 |
+
import os
|
10 |
import arxiv
|
11 |
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
|
12 |
|
13 |
retrieve_results = 10
|
14 |
show_examples = False
|
15 |
+
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.3', 'google/gemma-2-2b-it', 'None']
|
16 |
+
|
17 |
+
token = os.getenv("HF_TOKEN")
|
18 |
|
19 |
generate_kwargs = dict(
|
20 |
temperature = None,
|
|
|
35 |
gr.Warning("Retriever not working!")
|
36 |
|
37 |
## Header
|
38 |
+
mark_text = '# 🔍 Search Results\n'
|
39 |
+
header_text = "# ArXiv CS RAG \n"
|
40 |
|
41 |
try:
|
42 |
with open("README.md", "r") as f:
|
|
|
55 |
## Arxiv API
|
56 |
arx_client = arxiv.Client()
|
57 |
is_arxiv_available = True
|
58 |
+
check_arxiv_result = get_arxiv_live_search("What is Mistral?", arx_client, retrieve_results)
|
59 |
if len(check_arxiv_result) == 0:
|
60 |
is_arxiv_available = False
|
61 |
print("Arxiv search not working, switching to default search ...")
|
|
|
82 |
date = inp['document_metadata']['_time']
|
83 |
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
|
84 |
|
85 |
+
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3'):
|
86 |
if formatted:
|
87 |
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
|
88 |
message = f"Question: {question}"
|
|
|
102 |
def get_rag(message):
|
103 |
return get_references(message, RAG)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
106 |
header = gr.Markdown(header_text)
|
107 |
|
|
|
110 |
|
111 |
with gr.Accordion("Advanced Settings", open=False):
|
112 |
with gr.Row(equal_height = True):
|
113 |
+
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.3', label = 'LLM Model')
|
114 |
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
|
115 |
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
|
116 |
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
|
|
|
119 |
input = gr.Textbox(show_label = False, visible = False)
|
120 |
gr_md = gr.Markdown(mark_text + md_text_initial)
|
121 |
|
122 |
+
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3'):
|
123 |
prompt_text_from_data = ""
|
124 |
database_to_use = database_choice
|
125 |
if database_choice == index_info:
|
|
|
151 |
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
|
152 |
return md_text_updated, prompt
|
153 |
|
154 |
+
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3', stream_outputs = False):
|
155 |
model_disabled_text = "LLM Model is disabled"
|
156 |
output = ""
|
157 |
|
|
|
164 |
else:
|
165 |
return model_disabled_text
|
166 |
|
167 |
+
client = InferenceClient(llm_model_picked, token = token)
|
168 |
try:
|
169 |
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
|
170 |
|
|
|
175 |
if stream_outputs:
|
176 |
for response in stream:
|
177 |
output += response
|
|
|
178 |
yield output
|
179 |
return output
|
180 |
else:
|
|
|
183 |
|
184 |
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
|
185 |
|
186 |
+
demo.queue().launch()
|