Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -210,62 +210,33 @@ def search_glossary(query):
|
|
210 |
all_results = ""
|
211 |
st.markdown(f"- {query}")
|
212 |
|
213 |
-
|
214 |
#database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
|
215 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
216 |
-
|
217 |
-
# π Run 1 - ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
218 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
219 |
response2 = client.predict(
|
220 |
message=query, # str in 'parameter_13' Textbox component
|
221 |
-
llm_results_use=
|
222 |
database_choice="Semantic Search",
|
223 |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
224 |
api_name="/update_with_rag_md"
|
225 |
)
|
226 |
-
st.
|
|
|
227 |
|
228 |
-
|
229 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
230 |
-
|
|
|
231 |
result = client.predict(
|
232 |
prompt=query,
|
233 |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
234 |
stream_outputs=True,
|
235 |
api_name="/ask_llm"
|
236 |
)
|
|
|
237 |
st.code(result, language="python", line_numbers=True)
|
238 |
-
|
239 |
-
response1 = client.predict(
|
240 |
-
query,
|
241 |
-
10,
|
242 |
-
"Semantic Search - up to 10 Mar 2024", # Search Source Dropdown component
|
243 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1", # LLM Model Dropdown component
|
244 |
-
api_name="/update_with_rag_md"
|
245 |
-
)
|
246 |
-
st.code(response1[0], language="python", line_numbers=True, wrap_lines=False)
|
247 |
-
|
248 |
-
|
249 |
-
# ArXiv searcher - Paper Summary & Ask LLM
|
250 |
-
# client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
251 |
|
252 |
-
response1 = client.predict(
|
253 |
-
message=query,
|
254 |
-
llm_results_use=5,
|
255 |
-
database_choice=database_choice,
|
256 |
-
llm_model_picked=model_choice,
|
257 |
-
api_name="/update_with_rag_md"
|
258 |
-
)
|
259 |
-
st.code(response1, language="python", line_numbers=True, wrap_lines=False)
|
260 |
-
|
261 |
-
response2 = client.predict(
|
262 |
-
prompt=query,
|
263 |
-
llm_model_picked=model_choice,
|
264 |
-
stream_outputs=True,
|
265 |
-
api_name="/ask_llm"
|
266 |
-
)
|
267 |
-
st.code(response2, language="python", line_numbers=True, wrap_lines=False)
|
268 |
-
|
269 |
# Aggregate hyperlinks and show with emojis
|
270 |
hyperlinks = extract_hyperlinks([response1, response2])
|
271 |
st.markdown("### π Aggregated Hyperlinks")
|
@@ -277,60 +248,10 @@ def search_glossary(query):
|
|
277 |
st.code(f"Response 1: \n{format_with_line_numbers(response1)}\n\nResponse 2: \n{format_with_line_numbers(response2)}", language="json")
|
278 |
|
279 |
# Save both responses to Cosmos DB
|
280 |
-
save_to_cosmos_db(query,
|
281 |
|
282 |
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
# π Search Glossary function
|
287 |
-
def search_glossaryv1(query):
|
288 |
-
# π΅οΈββοΈ Searching the glossary for: query
|
289 |
-
all_results = ""
|
290 |
-
st.markdown(f"- {query}")
|
291 |
-
|
292 |
-
#database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
|
293 |
-
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
294 |
-
|
295 |
-
# π Run 1 - ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
296 |
-
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
297 |
-
response2 = client.predict(
|
298 |
-
message=query, # str in 'parameter_13' Textbox component
|
299 |
-
llm_results_use=5,
|
300 |
-
database_choice="Semantic Search",
|
301 |
-
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
302 |
-
api_name="/update_with_rag_md"
|
303 |
-
)
|
304 |
-
|
305 |
-
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
306 |
-
|
307 |
-
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
308 |
-
result = client.predict(
|
309 |
-
prompt=query,
|
310 |
-
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
311 |
-
stream_outputs=True,
|
312 |
-
api_name="/ask_llm"
|
313 |
-
)
|
314 |
-
st.write('π Run of Multi-Agent System Paper Summary Spec is Complete')
|
315 |
-
st.markdown(response2)
|
316 |
-
|
317 |
-
# ArXiv searcher ~-<>-~ Paper References - Update with RAG
|
318 |
-
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
319 |
-
response1 = client.predict(
|
320 |
-
query,
|
321 |
-
10,
|
322 |
-
"Semantic Search - up to 10 Mar 2024", # Search Source Dropdown component
|
323 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1", # LLM Model Dropdown component
|
324 |
-
api_name="/update_with_rag_md"
|
325 |
-
)
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
#st.write('π Run of Multi-Agent System Paper References is Complete')
|
330 |
-
#responseall = response2 + response1[0] + response1[1]
|
331 |
-
#st.markdown(responseall)
|
332 |
-
return responseall
|
333 |
-
|
334 |
# π Function to process text input
|
335 |
def process_text(text_input):
|
336 |
if text_input:
|
|
|
210 |
all_results = ""
|
211 |
st.markdown(f"- {query}")
|
212 |
|
213 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
214 |
#database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
|
215 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
216 |
+
|
|
|
217 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
218 |
response2 = client.predict(
|
219 |
message=query, # str in 'parameter_13' Textbox component
|
220 |
+
llm_results_use=10,
|
221 |
database_choice="Semantic Search",
|
222 |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
223 |
api_name="/update_with_rag_md"
|
224 |
)
|
225 |
+
st.markdown(response2)
|
226 |
+
st.code(response2, language="python", line_numbers=True, wrap_lines=True)
|
227 |
|
|
|
228 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
229 |
+
|
230 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
231 |
result = client.predict(
|
232 |
prompt=query,
|
233 |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
234 |
stream_outputs=True,
|
235 |
api_name="/ask_llm"
|
236 |
)
|
237 |
+
st.markdown(result)
|
238 |
st.code(result, language="python", line_numbers=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
# Aggregate hyperlinks and show with emojis
|
241 |
hyperlinks = extract_hyperlinks([response1, response2])
|
242 |
st.markdown("### π Aggregated Hyperlinks")
|
|
|
248 |
st.code(f"Response 1: \n{format_with_line_numbers(response1)}\n\nResponse 2: \n{format_with_line_numbers(response2)}", language="json")
|
249 |
|
250 |
# Save both responses to Cosmos DB
|
251 |
+
save_to_cosmos_db(query, response2, result)
|
252 |
|
253 |
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
# π Function to process text input
|
256 |
def process_text(text_input):
|
257 |
if text_input:
|