Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -192,10 +192,9 @@ def get_documents(container, limit=None):
|
|
| 192 |
items = list(container.query_items(query=query, enable_cross_partition_query=True, max_item_count=limit))
|
| 193 |
return items
|
| 194 |
|
| 195 |
-
def save_to_cosmos_db(query, response1, response2):
|
| 196 |
try:
|
| 197 |
-
|
| 198 |
-
if cosmos_container:
|
| 199 |
record = {
|
| 200 |
"id": generate_unique_id(),
|
| 201 |
"query": query,
|
|
@@ -203,20 +202,17 @@ def save_to_cosmos_db(query, response1, response2):
|
|
| 203 |
"response2": response2
|
| 204 |
}
|
| 205 |
try:
|
| 206 |
-
|
| 207 |
st.success(f"Record saved successfully with ID: {record['id']}")
|
| 208 |
# Refresh the documents display
|
| 209 |
-
st.session_state.documents = get_documents(
|
| 210 |
except exceptions.CosmosHttpResponseError as e:
|
| 211 |
st.error(f"Error saving record to Cosmos DB: {e}")
|
| 212 |
else:
|
| 213 |
-
st.error("Cosmos DB is not initialized.")
|
| 214 |
except Exception as e:
|
| 215 |
st.error(f"An unexpected error occurred: {str(e)}")
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
# Add dropdowns for model and database choices
|
| 221 |
def search_glossary(query):
|
| 222 |
st.markdown(f"### ๐ Search Glossary for: `{query}`")
|
|
@@ -253,7 +249,6 @@ def search_glossary(query):
|
|
| 253 |
)
|
| 254 |
st.markdown(result)
|
| 255 |
st.code(result, language="python", line_numbers=True)
|
| 256 |
-
save_to_cosmos_db(query, result, result) # Save both responses to Cosmos DB
|
| 257 |
|
| 258 |
# ๐ ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
| 259 |
result2 = client.predict(
|
|
@@ -264,7 +259,6 @@ def search_glossary(query):
|
|
| 264 |
)
|
| 265 |
st.markdown(result2)
|
| 266 |
st.code(result2, language="python", line_numbers=True)
|
| 267 |
-
save_to_cosmos_db(query, result2, result2) # Save both responses to Cosmos DB
|
| 268 |
|
| 269 |
# ๐ ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
| 270 |
result3 = client.predict(
|
|
@@ -275,7 +269,6 @@ def search_glossary(query):
|
|
| 275 |
)
|
| 276 |
st.markdown(result3)
|
| 277 |
st.code(result3, language="python", line_numbers=True)
|
| 278 |
-
save_to_cosmos_db(query, result3, result3) # Save both responses to Cosmos DB
|
| 279 |
|
| 280 |
|
| 281 |
# ๐ ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /update_with_rag_md
|
|
@@ -289,12 +282,16 @@ def search_glossary(query):
|
|
| 289 |
|
| 290 |
st.markdown(response2[0])
|
| 291 |
st.code(response2[0], language="python", line_numbers=True, wrap_lines=True)
|
| 292 |
-
save_to_cosmos_db(query, response2[0], response2[0]) # Save both responses to Cosmos DB
|
| 293 |
|
| 294 |
st.markdown(response2[1])
|
| 295 |
st.code(response2[1], language="python", line_numbers=True, wrap_lines=True)
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
# Aggregate hyperlinks and show with emojis
|
| 300 |
hyperlinks = extract_hyperlinks([response1, response2])
|
|
|
|
| 192 |
items = list(container.query_items(query=query, enable_cross_partition_query=True, max_item_count=limit))
|
| 193 |
return items
|
| 194 |
|
| 195 |
+
def save_to_cosmos_db(container, query, response1, response2):
|
| 196 |
try:
|
| 197 |
+
if container:
|
|
|
|
| 198 |
record = {
|
| 199 |
"id": generate_unique_id(),
|
| 200 |
"query": query,
|
|
|
|
| 202 |
"response2": response2
|
| 203 |
}
|
| 204 |
try:
|
| 205 |
+
container.create_item(body=record)
|
| 206 |
st.success(f"Record saved successfully with ID: {record['id']}")
|
| 207 |
# Refresh the documents display
|
| 208 |
+
st.session_state.documents = get_documents(container)
|
| 209 |
except exceptions.CosmosHttpResponseError as e:
|
| 210 |
st.error(f"Error saving record to Cosmos DB: {e}")
|
| 211 |
else:
|
| 212 |
+
st.error("Cosmos DB container is not initialized.")
|
| 213 |
except Exception as e:
|
| 214 |
st.error(f"An unexpected error occurred: {str(e)}")
|
| 215 |
|
|
|
|
|
|
|
|
|
|
| 216 |
# Add dropdowns for model and database choices
|
| 217 |
def search_glossary(query):
|
| 218 |
st.markdown(f"### ๐ Search Glossary for: `{query}`")
|
|
|
|
| 249 |
)
|
| 250 |
st.markdown(result)
|
| 251 |
st.code(result, language="python", line_numbers=True)
|
|
|
|
| 252 |
|
| 253 |
# ๐ ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
| 254 |
result2 = client.predict(
|
|
|
|
| 259 |
)
|
| 260 |
st.markdown(result2)
|
| 261 |
st.code(result2, language="python", line_numbers=True)
|
|
|
|
| 262 |
|
| 263 |
# ๐ ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /ask_llm
|
| 264 |
result3 = client.predict(
|
|
|
|
| 269 |
)
|
| 270 |
st.markdown(result3)
|
| 271 |
st.code(result3, language="python", line_numbers=True)
|
|
|
|
| 272 |
|
| 273 |
|
| 274 |
# ๐ ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM - api_name: /update_with_rag_md
|
|
|
|
| 282 |
|
| 283 |
st.markdown(response2[0])
|
| 284 |
st.code(response2[0], language="python", line_numbers=True, wrap_lines=True)
|
|
|
|
| 285 |
|
| 286 |
st.markdown(response2[1])
|
| 287 |
st.code(response2[1], language="python", line_numbers=True, wrap_lines=True)
|
| 288 |
+
|
| 289 |
+
# When saving results, pass the container
|
| 290 |
+
save_to_cosmos_db(st.session_state.cosmos_container, query, result, result)
|
| 291 |
+
save_to_cosmos_db(st.session_state.cosmos_container, query, result2, result2)
|
| 292 |
+
save_to_cosmos_db(st.session_state.cosmos_container, query, result3, result3)
|
| 293 |
+
save_to_cosmos_db(st.session_state.cosmos_container, query, response2[0], response2[0])
|
| 294 |
+
save_to_cosmos_db(st.session_state.cosmos_container, query, response2[1], response2[1])
|
| 295 |
|
| 296 |
# Aggregate hyperlinks and show with emojis
|
| 297 |
hyperlinks = extract_hyperlinks([response1, response2])
|