awacke1's picture
Create app.py
491710e verified
raw
history blame
2.19 kB
import os
import nltk
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import CountVectorizer
import plotly.express as px
def preprocess_text(text):
# Tokenize the text and remove stopwords
tokens = nltk.word_tokenize(text.lower())
stop_words = set(stopwords.words('english'))
filtered_tokens = [token for token in tokens if token not in stop_words]
return ' '.join(filtered_tokens)
def get_context_files(prompt):
# Get all .md files in the current directory
md_files = [file for file in os.listdir() if file.endswith('.md')]
# Preprocess the prompt and context files
processed_prompt = preprocess_text(prompt)
processed_files = {}
for file in md_files:
with open(file, 'r') as f:
content = f.read()
processed_files[file] = preprocess_text(content)
# Create a CountVectorizer to calculate word counts
vectorizer = CountVectorizer()
file_vectors = vectorizer.fit_transform(processed_files.values())
prompt_vector = vectorizer.transform([processed_prompt])
# Calculate the number of matching words for each file
match_counts = prompt_vector.dot(file_vectors.T).toarray()[0]
# Sort the files by the number of matching words
sorted_files = sorted(zip(md_files, match_counts), key=lambda x: x[1], reverse=True)
# Get the top ten files
top_ten_files = [file for file, count in sorted_files[:10]]
# Create a single prompt by concatenating the original prompt and the content of the top ten files
context_prompt = prompt
for file in top_ten_files:
with open(file, 'r') as f:
context_prompt += '\n\n' + f.read()
# Create a plotly graph showing the counts of matching words for the top ten files
fig = px.bar(x=[file for file, count in sorted_files[:10]], y=[count for file, count in sorted_files[:10]])
fig.update_layout(xaxis_title='File', yaxis_title='Number of Matching Words')
fig.show()
return context_prompt
# Example usage
prompt = "What is the importance of machine learning in healthcare?"
context_prompt = get_context_files(prompt)
print(context_prompt)