import http.client as http_client import json import logging import os import re import string import traceback import gradio as gr import requests from huggingface_hub import HfApi hf_api = HfApi() #roots_datasets = {dset.id.split("/")[-1]:dset for dset in hf_api.list_datasets(author="bigscience-data", use_auth_token=os.environ.get("bigscience_data_token"))} roots_datasets = {dset.id.split("/")[-1]:dset for dset in hf_api.list_datasets(author="bigscience-data", use_auth_token=os.environ.get("HF_TOKEN"))} def get_docid_html(docid): data_org, dataset, docid = docid.split("/") metadata = roots_datasets[dataset] if metadata.private: docid_html = ( f"🔒{dataset}/{docid}' ) else: docid_html = ( f"{dataset}/{docid}' ) return docid_html PII_TAGS = {"KEY", "EMAIL", "USER", "IP_ADDRESS", "ID", "IPv4", "IPv6"} PII_PREFIX = "PI:" def process_pii(text): for tag in PII_TAGS: text = text.replace( PII_PREFIX + tag, """REDACTED {}""".format(tag), ) return text def process_results(results, highlight_terms): if len(results) == 0: return """

No results retrieved.



""" results_html = "" for result in results: tokens = result["text"].split() tokens_html = [] for token in tokens: if token in highlight_terms: tokens_html.append("{}".format(token)) else: tokens_html.append(token) tokens_html = " ".join(tokens_html) tokens_html = process_pii(tokens_html) meta_html = ( """

{}

""".format( result["meta"]["url"], result["meta"]["url"] ) if "meta" in result and result["meta"] is not None and "url" in result["meta"] else "" ) docid_html = get_docid_html(result["docid"]) results_html += """{}

Document ID: {}

Language: {}

{}


""".format( meta_html, docid_html, result["lang"], tokens_html ) return results_html + "
" def scisearch(query, language, num_results=10): try: query = " ".join(query.split()) if query == "" or query is None: return "" post_data = {"query": query, "k": num_results} if language != "detect_language": post_data["lang"] = language output = requests.post( os.environ.get("address"), headers={"Content-type": "application/json"}, data=json.dumps(post_data), timeout=60, ) payload = json.loads(output.text) if "err" in payload: if payload["err"]["type"] == "unsupported_lang": detected_lang = payload["err"]["meta"]["detected_lang"] return f"""

Detected language {detected_lang} is not supported.
Please choose a language from the dropdown or type another query.




""" results = payload["results"] highlight_terms = payload["highlight_terms"] if language == "detect_language": results = list(results.values())[0] return ( ( f"""

Detected language: {results[0]["lang"]}




""" if len(results) > 0 and language == "detect_language" else "" ) + process_results(results, highlight_terms) ) if language == "all": results_html = "" for lang, results_for_lang in results.items(): if len(results_for_lang) == 0: results_html += f"""

No results for language: {lang}


""" continue collapsible_results = f"""
Results for language: {lang}
{process_results(results_for_lang, highlight_terms)}
""" results_html += collapsible_results return results_html results = list(results.values())[0] return process_results(results, highlight_terms) except Exception as e: results_html = f"""

Raised {type(e).__name__}

Check if a relevant discussion already exists in the Community tab. If not, please open a discussion.

""" print(e) print(traceback.format_exc()) return results_html def flag(query, language, num_results, issue_description): try: post_data = {"query": query, "k": num_results, "flag": True, "description": issue_description} if language != "detect_language": post_data["lang"] = language output = requests.post( os.environ.get("address"), headers={"Content-type": "application/json"}, data=json.dumps(post_data), timeout=120, ) results = json.loads(output.text) except: print("Error flagging") return "" description = """#

🌸 🔎 Bloom Searcher 🔍 🌸

Tool design for Roots: [URL](https://huggingface.co/spaces/bigscience-data/scisearch/blob/main/roots_search_tool_specs.pdf). Bloom on Wikipedia: [URL](https://en.wikipedia.org/wiki/BLOOM_(language_model)). Bloom Video Playlist: [URL](https://www.youtube.com/playlist?list=PLHgX2IExbFouqnsIqziThlPCX_miiDq14). Access full corpus check [URL](https://forms.gle/qyYswbEL5kA23Wu99). Big Science - How to get started Big Science is a 176B parameter new ML model that was trained on a set of datasets for Natural Language processing, and many other tasks that are not yet explored.. Below is the set of the papers, models, links, and datasets around big science which promises to be the best, most recent large model of its kind benefitting all science pursuits. Model: https://huggingface.co/bigscience/bloom Papers: BLOOM: A 176B-Parameter Open-Access Multilingual Language Model https://arxiv.org/abs/2211.05100 Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism https://arxiv.org/abs/1909.08053 8-bit Optimizers via Block-wise Quantization https://arxiv.org/abs/2110.02861 Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation https://arxiv.org/abs/2108.12409 https://huggingface.co/models?other=doi:10.57967/hf/0003 217 Other Models optimizing use of bloom via specialization: https://huggingface.co/models?other=bloom Datasets Universal Dependencies: https://paperswithcode.com/dataset/universal-dependencies WMT 2014: https://paperswithcode.com/dataset/wmt-2014 The Pile: https://paperswithcode.com/dataset/the-pile HumanEval: https://paperswithcode.com/dataset/humaneval FLORES-101: https://paperswithcode.com/dataset/flores-101 CrowS-Pairs: https://paperswithcode.com/dataset/crows-pairs WikiLingua: https://paperswithcode.com/dataset/wikilingua MTEB: https://paperswithcode.com/dataset/mteb xP3: https://paperswithcode.com/dataset/xp3 DiaBLa: https://paperswithcode.com/dataset/diabla """ if __name__ == "__main__": demo = gr.Blocks( css=".underline-on-hover:hover { text-decoration: underline; } .flagging { font-size:12px; color:Silver; }" ) with demo: with gr.Row(): gr.Markdown(value=description) with gr.Row(): query = gr.Textbox(lines=1, max_lines=1, placeholder="Type your query here...", label="Query") with gr.Row(): lang = gr.Dropdown( choices=[ "ar", "ca", "code", "en", "es", "eu", "fr", "id", "indic", "nigercongo", "pt", "vi", "zh", "detect_language", "all", ], value="en", label="Language", ) with gr.Row(): k = gr.Slider(1, 100, value=10, step=1, label="Max Results") with gr.Row(): submit_btn = gr.Button("Submit") with gr.Row(): results = gr.HTML(label="Results") flag_description = """

If you choose to flag your search, we will save the query, language and the number of results you requested. Please consider adding any additional context in the box on the right.

""" with gr.Column(visible=False) as flagging_form: flag_txt = gr.Textbox( lines=1, placeholder="Type here...", label="""If you choose to flag your search, we will save the query, language and the number of results you requested. Please consider adding relevant additional context below:""", ) flag_btn = gr.Button("Flag Results") flag_btn.click(flag, inputs=[query, lang, k, flag_txt], outputs=[flag_txt]) def submit(query, lang, k): query = query.strip() if query is None or query == "": return "", "" return { results: scisearch(query, lang, k), flagging_form: gr.update(visible=True), } query.submit(fn=submit, inputs=[query, lang, k], outputs=[results, flagging_form]) submit_btn.click(submit, inputs=[query, lang, k], outputs=[results, flagging_form]) demo.launch(enable_queue=True, debug=True)