awacke1 commited on
Commit
9d21204
·
verified ·
1 Parent(s): d49eb3d

Delete backup.02162024.app.py

Browse files
Files changed (1) hide show
  1. backup.02162024.app.py +0 -1210
backup.02162024.app.py DELETED
@@ -1,1210 +0,0 @@
1
- import streamlit as st
2
- import os
3
- import json
4
- from PIL import Image
5
- from urllib.parse import quote # Ensure this import is included
6
-
7
- # Set page configuration with a title and favicon
8
- st.set_page_config(
9
- page_title="🌌🚀 Mixable AI - Voice Search",
10
- page_icon="🌠",
11
- layout="wide",
12
- initial_sidebar_state="expanded",
13
- menu_items={
14
- 'Get Help': 'https://huggingface.co/awacke1',
15
- 'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload",
16
- 'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558"
17
- }
18
- )
19
-
20
- # Ensure the directory for storing scores exists
21
- score_dir = "scores"
22
- os.makedirs(score_dir, exist_ok=True)
23
-
24
- # Function to generate a unique key for each button, including an emoji
25
- def generate_key(label, header, idx):
26
- return f"{header}_{label}_{idx}_key"
27
-
28
- # Function to increment and save score
29
- def update_score(key, increment=1):
30
- score_file = os.path.join(score_dir, f"{key}.json")
31
- if os.path.exists(score_file):
32
- with open(score_file, "r") as file:
33
- score_data = json.load(file)
34
- else:
35
- score_data = {"clicks": 0, "score": 0}
36
-
37
- score_data["clicks"] += 1
38
- score_data["score"] += increment
39
-
40
- with open(score_file, "w") as file:
41
- json.dump(score_data, file)
42
-
43
- return score_data["score"]
44
-
45
- # Function to load score
46
- def load_score(key):
47
- score_file = os.path.join(score_dir, f"{key}.json")
48
- if os.path.exists(score_file):
49
- with open(score_file, "r") as file:
50
- score_data = json.load(file)
51
- return score_data["score"]
52
- return 0
53
-
54
- # Transhuman Space glossary with full content
55
- transhuman_glossary = {
56
- "🚀 Core Technologies": ["Nanotechnology🔬", "Artificial Intelligence🤖", "Quantum Computing💻", "Spacecraft Engineering🛸", "Biotechnology🧬", "Cybernetics🦾", "Virtual Reality🕶️", "Energy Systems⚡", "Material Science🧪", "Communication Technologies📡"],
57
- "🌐 Nations": ["Terran Federation🌍", "Martian Syndicate🔴", "Jovian Republics🪐", "Asteroid Belt Communities🌌", "Venusian Colonies🌋", "Lunar States🌖", "Outer System Alliances✨", "Digital Consciousness Collectives🧠", "Transhumanist Enclaves🦿", "Non-Human Intelligence Tribes👽"],
58
- "💡 Memes": ["Post-Humanism🚶‍♂️➡️🚀", "Neo-Evolutionism🧬📈", "Digital Ascendancy💾👑", "Solar System Nationalism🌞🏛", "Space Explorationism🚀🛰", "Cyber Democracy🖥️🗳️", "Interstellar Environmentalism🌍💚", "Quantum Mysticism🔮💫", "Techno-Anarchism🔌🏴", "Cosmic Preservationism🌌🛡️"],
59
- "🏛 Institutions": ["Interstellar Council🪖", "Transhuman Ethical Standards Organization📜", "Galactic Trade Union🤝", "Space Habitat Authority🏠", "Artificial Intelligence Safety Commission🤖🔒", "Extraterrestrial Relations Board👽🤝", "Quantum Research Institute🔬", "Biogenetics Oversight Committee🧫", "Cyberspace Regulatory Agency💻", "Planetary Defense Coalition🌍🛡"],
60
- "🔗 Organizations": ["Neural Network Pioneers🧠🌐", "Spacecraft Innovators Guild🚀🛠", "Quantum Computing Consortium💻🔗", "Interplanetary Miners Union⛏️🪐", "Cybernetic Augmentation Advocates🦾❤️", "Biotechnological Harmony Group🧬🕊", "Stellar Navigation Circle🧭✨", "Virtual Reality Creators Syndicate🕶️🎨", "Renewable Energy Pioneers⚡🌱", "Transhuman Rights Activists🦿📢"],
61
- "⚔️ War": ["Space Warfare Tactics🚀⚔️", "Cyber Warfare🖥️🔒", "Biological Warfare🧬💣", "Nanotech Warfare🔬⚔️", "Psychological Operations🧠🗣️", "Quantum Encryption & Decryption🔐💻", "Kinetic Bombardment🚀💥", "Energy Shield Defense🛡️⚡", "Stealth Spacecraft🚀🔇", "Artificial Intelligence Combat🤖⚔️"],
62
- "🎖 Military": ["Interstellar Navy🚀🎖", "Planetary Guard🌍🛡", "Cybernetic Marines🦾🔫", "Nanotech Soldiers🔬💂", "Space Drone Fleet🛸🤖", "Quantum Signal Corps💻📡", "Special Operations Forces👥⚔️", "Artificial Intelligence Strategists🤖🗺️", "Orbital Defense Systems🌌🛡️", "Exoskeleton Brigades🦾🚶‍♂️"],
63
- "🦹 Outlaws": ["Pirate Fleets🏴‍☠️🚀", "Hacktivist Collectives💻🚫", "Smuggler Caravans🛸💼", "Rebel AI Entities🤖🚩", "Black Market Biotech Dealers🧬💰", "Quantum Thieves💻🕵️‍♂️", "Space Nomad Raiders🚀🏴‍☠️", "Cyberspace Intruders💻👾", "Anti-Transhumanist Factions🚫🦾", "Rogue Nanotech Swarms🔬🦠"],
64
- "👽 Terrorists": ["Bioengineered Virus Spreaders🧬💉", "Nanotechnology Saboteurs🔬🧨", "Cyber Terrorist Networks💻🔥", "Rogue AI Sects🤖🛑", "Space Anarchist Cells🚀Ⓐ", "Quantum Data Hijackers💻🔓", "Environmental Extremists🌍💣", "Technological Singularity Cults🤖🙏", "Interspecies Supremacists👽👑", "Orbital Bombardment Threats🛰️💥"],
65
- }
66
-
67
-
68
- # Function to search glossary and display results
69
- def search_glossary(query):
70
- for category, terms in transhuman_glossary.items():
71
- if query.lower() in (term.lower() for term in terms):
72
- st.markdown(f"### {category}")
73
- st.write(f"- {query}")
74
-
75
- st.write('## Processing query against GPT and Llama:')
76
- # ------------------------------------------------------------------------------------------------
77
- st.write('Reasoning with your inputs using GPT...')
78
- response = chat_with_model(query)
79
- st.write('Response:')
80
- st.write(response)
81
- filename = generate_filename(response, "txt")
82
- create_file(filename, query, response, should_save)
83
-
84
- st.write('Reasoning with your inputs using Llama...')
85
- response = StreamLLMChatResponse(query)
86
- filename_txt = generate_filename(query, "md")
87
- create_file(filename_txt, query, response, should_save)
88
- # ------------------------------------------------------------------------------------------------
89
-
90
-
91
- # Display the glossary with Streamlit components, ensuring emojis are used
92
- def display_glossary(area):
93
- st.subheader(f"📘 Glossary for {area}")
94
- terms = transhuman_glossary[area]
95
- for idx, term in enumerate(terms, start=1):
96
- st.write(f"{idx}. {term}")
97
-
98
-
99
-
100
- def display_glossary_grid(glossary):
101
- # Search URL functions with emoji as keys, now using quote for URL safety
102
- search_urls = {
103
- "📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
104
- "🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
105
- "▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
106
- "🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}"
107
- }
108
-
109
- groupings = [
110
- ["🚀 Core Technologies", "🌐 Nations", "💡 Memes"],
111
- ["🏛 Institutions", "🔗 Organizations", "⚔️ War"],
112
- ["🎖 Military", "🦹 Outlaws", "👽 Terrorists"],
113
- ]
114
-
115
- for group in groupings:
116
- cols = st.columns(3) # Create columns for a 3x3 grid
117
- for idx, category in enumerate(group):
118
- with cols[idx]:
119
- st.write(f"### {category}")
120
- if category in glossary:
121
- terms = glossary[category]
122
- for term in terms:
123
- # Generate and display links for each term, now safely encoding URLs
124
- links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
125
- st.markdown(f"{term} {links_md}", unsafe_allow_html=True)
126
-
127
-
128
- # Streamlined UI for displaying buttons with scores, integrating emojis
129
- def display_buttons_with_scores():
130
- for header, terms in transhuman_glossary.items():
131
- st.markdown(f"## {header}")
132
- for term in terms:
133
- key = generate_key(term, header, terms.index(term))
134
- score = load_score(key)
135
- if st.button(f"{term} {score}🚀", key=key):
136
- update_score(key)
137
- search_glossary('Create a three level markdown outline with 3 subpoints each where each line defines and writes out the core technology descriptions with appropriate emojis for the glossary term: ' + term)
138
- st.experimental_rerun()
139
-
140
- def fetch_wikipedia_summary(keyword):
141
- # Placeholder function for fetching Wikipedia summaries
142
- # In a real app, you might use requests to fetch from the Wikipedia API
143
- return f"Summary for {keyword}. For more information, visit Wikipedia."
144
-
145
- def create_search_url_youtube(keyword):
146
- base_url = "https://www.youtube.com/results?search_query="
147
- return base_url + keyword.replace(' ', '+')
148
-
149
- def create_search_url_bing(keyword):
150
- base_url = "https://www.bing.com/search?q="
151
- return base_url + keyword.replace(' ', '+')
152
-
153
- def create_search_url_wikipedia(keyword):
154
- base_url = "https://www.wikipedia.org/search-redirect.php?family=wikipedia&language=en&search="
155
- return base_url + keyword.replace(' ', '+')
156
-
157
- def create_search_url_google(keyword):
158
- base_url = "https://www.google.com/search?q="
159
- return base_url + keyword.replace(' ', '+')
160
-
161
-
162
- def display_images_and_wikipedia_summaries():
163
- st.title('Gallery with Related Stories')
164
- image_files = [f for f in os.listdir('.') if f.endswith('.png')]
165
- if not image_files:
166
- st.write("No PNG images found in the current directory.")
167
- return
168
-
169
- for image_file in image_files:
170
- image = Image.open(image_file)
171
- st.image(image, caption=image_file, use_column_width=True)
172
-
173
- keyword = image_file.split('.')[0] # Assumes keyword is the file name without extension
174
-
175
- # Display Wikipedia and Google search links
176
- wikipedia_url = create_search_url_wikipedia(keyword)
177
- google_url = create_search_url_google(keyword)
178
- youtube_url = create_search_url_youtube(keyword)
179
- bing_url = create_search_url_bing(keyword)
180
-
181
- links_md = f"""
182
- [Wikipedia]({wikipedia_url}) |
183
- [Google]({google_url}) |
184
- [YouTube]({youtube_url}) |
185
- [Bing]({bing_url})
186
- """
187
- st.markdown(links_md)
188
-
189
-
190
- def get_all_query_params(key):
191
- return st.query_params().get(key, [])
192
-
193
- def clear_query_params():
194
- st.query_params()
195
-
196
-
197
- # Function to display content or image based on a query
198
- def display_content_or_image(query):
199
- # Check if the query matches any glossary term
200
- for category, terms in transhuman_glossary.items():
201
- for term in terms:
202
- if query.lower() in term.lower():
203
- st.subheader(f"Found in {category}:")
204
- st.write(term)
205
- return True # Return after finding and displaying the first match
206
-
207
- # Check for an image match in a predefined directory (adjust path as needed)
208
- image_dir = "images" # Example directory where images are stored
209
- image_path = f"{image_dir}/{query}.png" # Construct image path with query
210
- if os.path.exists(image_path):
211
- st.image(image_path, caption=f"Image for {query}")
212
- return True
213
-
214
- # If no content or image is found
215
- st.warning("No matching content or image found.")
216
- return False
217
-
218
-
219
-
220
-
221
-
222
-
223
-
224
- # Imports
225
- import base64
226
- import glob
227
- import json
228
- import math
229
- import openai
230
- import os
231
- import pytz
232
- import re
233
- import requests
234
- import streamlit as st
235
- import textract
236
- import time
237
- import zipfile
238
- import huggingface_hub
239
- import dotenv
240
- from audio_recorder_streamlit import audio_recorder
241
- from bs4 import BeautifulSoup
242
- from collections import deque
243
- from datetime import datetime
244
- from dotenv import load_dotenv
245
- from huggingface_hub import InferenceClient
246
- from io import BytesIO
247
- from langchain.chat_models import ChatOpenAI
248
- from langchain.chains import ConversationalRetrievalChain
249
- from langchain.embeddings import OpenAIEmbeddings
250
- from langchain.memory import ConversationBufferMemory
251
- from langchain.text_splitter import CharacterTextSplitter
252
- from langchain.vectorstores import FAISS
253
- from openai import ChatCompletion
254
- from PyPDF2 import PdfReader
255
- from templates import bot_template, css, user_template
256
- from xml.etree import ElementTree as ET
257
- import streamlit.components.v1 as components # Import Streamlit Components for HTML5
258
-
259
-
260
- def add_Med_Licensing_Exam_Dataset():
261
- import streamlit as st
262
- from datasets import load_dataset
263
- dataset = load_dataset("augtoma/usmle_step_1")['test'] # Using 'test' split
264
- st.title("USMLE Step 1 Dataset Viewer")
265
- if len(dataset) == 0:
266
- st.write("😢 The dataset is empty.")
267
- else:
268
- st.write("""
269
- 🔍 Use the search box to filter questions or use the grid to scroll through the dataset.
270
- """)
271
-
272
- # 👩‍🔬 Search Box
273
- search_term = st.text_input("Search for a specific question:", "")
274
-
275
- # 🎛 Pagination
276
- records_per_page = 100
277
- num_records = len(dataset)
278
- num_pages = max(int(num_records / records_per_page), 1)
279
-
280
- # Skip generating the slider if num_pages is 1 (i.e., all records fit in one page)
281
- if num_pages > 1:
282
- page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1)))
283
- else:
284
- page_number = 1 # Only one page
285
-
286
- # 📊 Display Data
287
- start_idx = (page_number - 1) * records_per_page
288
- end_idx = start_idx + records_per_page
289
-
290
- # 🧪 Apply the Search Filter
291
- filtered_data = []
292
- for record in dataset[start_idx:end_idx]:
293
- if isinstance(record, dict) and 'text' in record and 'id' in record:
294
- if search_term:
295
- if search_term.lower() in record['text'].lower():
296
- st.markdown(record)
297
- filtered_data.append(record)
298
- else:
299
- filtered_data.append(record)
300
-
301
- # 🌐 Render the Grid
302
- for record in filtered_data:
303
- st.write(f"## Question ID: {record['id']}")
304
- st.write(f"### Question:")
305
- st.write(f"{record['text']}")
306
- st.write(f"### Answer:")
307
- st.write(f"{record['answer']}")
308
- st.write("---")
309
-
310
- st.write(f"😊 Total Records: {num_records} | 📄 Displaying {start_idx+1} to {min(end_idx, num_records)}")
311
-
312
- # 1. Constants and Top Level UI Variables
313
-
314
- # My Inference API Copy
315
- API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
316
- # Meta's Original - Chat HF Free Version:
317
- #API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
318
- API_KEY = os.getenv('API_KEY')
319
- MODEL1="meta-llama/Llama-2-7b-chat-hf"
320
- MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
321
- HF_KEY = os.getenv('HF_KEY')
322
- headers = {
323
- "Authorization": f"Bearer {HF_KEY}",
324
- "Content-Type": "application/json"
325
- }
326
- key = os.getenv('OPENAI_API_KEY')
327
- prompt = f"Write instructions to teach discharge planning along with guidelines and patient education. List entities, features and relationships to CCDA and FHIR objects in boldface."
328
- should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
329
-
330
- # 2. Prompt label button demo for LLM
331
- def add_witty_humor_buttons():
332
- with st.expander("Wit and Humor 🤣", expanded=True):
333
- # Tip about the Dromedary family
334
- st.markdown("🔬 **Fun Fact**: Dromedaries, part of the camel family, have a single hump and are adapted to arid environments. Their 'superpowers' include the ability to survive without water for up to 7 days, thanks to their specialized blood cells and water storage in their hump.")
335
-
336
- # Define button descriptions
337
- descriptions = {
338
- "Generate Limericks 😂": "Write ten random adult limericks based on quotes that are tweet length and make you laugh 🎭",
339
- "Wise Quotes 🧙": "Generate ten wise quotes that are tweet length 🦉",
340
- "Funny Rhymes 🎤": "Create ten funny rhymes that are tweet length 🎶",
341
- "Medical Jokes 💉": "Create ten medical jokes that are tweet length 🏥",
342
- "Minnesota Humor ❄️": "Create ten jokes about Minnesota that are tweet length 🌨️",
343
- "Top Funny Stories 📖": "Create ten funny stories that are tweet length 📚",
344
- "More Funny Rhymes 🎙️": "Create ten more funny rhymes that are tweet length 🎵"
345
- }
346
-
347
- # Create columns
348
- col1, col2, col3 = st.columns([1, 1, 1], gap="small")
349
-
350
- # Add buttons to columns
351
- if col1.button("Wise Limericks 😂"):
352
- StreamLLMChatResponse(descriptions["Generate Limericks 😂"])
353
-
354
- if col2.button("Wise Quotes 🧙"):
355
- StreamLLMChatResponse(descriptions["Wise Quotes 🧙"])
356
-
357
- #if col3.button("Funny Rhymes 🎤"):
358
- # StreamLLMChatResponse(descriptions["Funny Rhymes 🎤"])
359
-
360
- col4, col5, col6 = st.columns([1, 1, 1], gap="small")
361
-
362
- if col4.button("Top Ten Funniest Clean Jokes 💉"):
363
- StreamLLMChatResponse(descriptions["Top Ten Funniest Clean Jokes 💉"])
364
-
365
- if col5.button("Minnesota Humor ❄️"):
366
- StreamLLMChatResponse(descriptions["Minnesota Humor ❄️"])
367
-
368
- if col6.button("Origins of Medical Science True Stories"):
369
- StreamLLMChatResponse(descriptions["Origins of Medical Science True Stories"])
370
-
371
- col7 = st.columns(1, gap="small")
372
-
373
- if col7[0].button("Top Ten Best Write a streamlit python program prompts to build AI programs. 🎙️"):
374
- StreamLLMChatResponse(descriptions["Top Ten Best Write a streamlit python program prompts to build AI programs. 🎙️"])
375
-
376
- def SpeechSynthesis(result):
377
- documentHTML5='''
378
- <!DOCTYPE html>
379
- <html>
380
- <head>
381
- <title>Read It Aloud</title>
382
- <script type="text/javascript">
383
- function readAloud() {
384
- const text = document.getElementById("textArea").value;
385
- const speech = new SpeechSynthesisUtterance(text);
386
- window.speechSynthesis.speak(speech);
387
- }
388
- </script>
389
- </head>
390
- <body>
391
- <h1>🔊 Read It Aloud</h1>
392
- <textarea id="textArea" rows="10" cols="80">
393
- '''
394
- documentHTML5 = documentHTML5 + result
395
- documentHTML5 = documentHTML5 + '''
396
- </textarea>
397
- <br>
398
- <button onclick="readAloud()">🔊 Read Aloud</button>
399
- </body>
400
- </html>
401
- '''
402
-
403
- components.html(documentHTML5, width=1280, height=300)
404
- #return result
405
-
406
-
407
- # 3. Stream Llama Response
408
- # @st.cache_resource
409
- def StreamLLMChatResponse(prompt):
410
- try:
411
- endpoint_url = API_URL
412
- hf_token = API_KEY
413
- st.write('Running client ' + endpoint_url)
414
- client = InferenceClient(endpoint_url, token=hf_token)
415
- gen_kwargs = dict(
416
- max_new_tokens=512,
417
- top_k=30,
418
- top_p=0.9,
419
- temperature=0.2,
420
- repetition_penalty=1.02,
421
- stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
422
- )
423
- stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
424
- report=[]
425
- res_box = st.empty()
426
- collected_chunks=[]
427
- collected_messages=[]
428
- allresults=''
429
- for r in stream:
430
- if r.token.special:
431
- continue
432
- if r.token.text in gen_kwargs["stop_sequences"]:
433
- break
434
- collected_chunks.append(r.token.text)
435
- chunk_message = r.token.text
436
- collected_messages.append(chunk_message)
437
- try:
438
- report.append(r.token.text)
439
- if len(r.token.text) > 0:
440
- result="".join(report).strip()
441
- res_box.markdown(f'*{result}*')
442
-
443
- except:
444
- st.write('Stream llm issue')
445
- SpeechSynthesis(result)
446
- return result
447
- except:
448
- st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
449
-
450
- # 4. Run query with payload
451
- def query(payload):
452
- response = requests.post(API_URL, headers=headers, json=payload)
453
- st.markdown(response.json())
454
- return response.json()
455
- def get_output(prompt):
456
- return query({"inputs": prompt})
457
-
458
- # 5. Auto name generated output files from time and content
459
- def generate_filename(prompt, file_type):
460
- central = pytz.timezone('US/Central')
461
- safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
462
- replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
463
- safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max
464
- #safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
465
- return f"{safe_date_time}_{safe_prompt}.{file_type}"
466
-
467
- # 6. Speech transcription via OpenAI service
468
- def transcribe_audio(openai_key, file_path, model):
469
- openai.api_key = openai_key
470
- OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
471
- headers = {
472
- "Authorization": f"Bearer {openai_key}",
473
- }
474
- with open(file_path, 'rb') as f:
475
- data = {'file': f}
476
- st.write('STT transcript ' + OPENAI_API_URL)
477
- response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
478
- if response.status_code == 200:
479
- st.write(response.json())
480
- chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
481
- transcript = response.json().get('text')
482
- filename = generate_filename(transcript, 'txt')
483
- response = chatResponse
484
- user_prompt = transcript
485
- create_file(filename, user_prompt, response, should_save)
486
- return transcript
487
- else:
488
- st.write(response.json())
489
- st.error("Error in API call.")
490
- return None
491
-
492
- # 7. Auto stop on silence audio control for recording WAV files
493
- def save_and_play_audio(audio_recorder):
494
- audio_bytes = audio_recorder(key='audio_recorder')
495
- if audio_bytes:
496
- filename = generate_filename("Recording", "wav")
497
- with open(filename, 'wb') as f:
498
- f.write(audio_bytes)
499
- st.audio(audio_bytes, format="audio/wav")
500
- return filename
501
- return None
502
-
503
- # 8. File creator that interprets type and creates output file for text, markdown and code
504
- def create_file(filename, prompt, response, should_save=True):
505
- if not should_save:
506
- return
507
- base_filename, ext = os.path.splitext(filename)
508
- if ext in ['.txt', '.htm', '.md']:
509
- with open(f"{base_filename}.md", 'w') as file:
510
- try:
511
- content = prompt.strip() + '\r\n' + response
512
- file.write(content)
513
- except:
514
- st.write('.')
515
-
516
- #has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
517
- #has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
518
- #if has_python_code:
519
- # python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
520
- # with open(f"{base_filename}-Code.py", 'w') as file:
521
- # file.write(python_code)
522
- # with open(f"{base_filename}.md", 'w') as file:
523
- # content = prompt.strip() + '\r\n' + response
524
- # file.write(content)
525
-
526
- def truncate_document(document, length):
527
- return document[:length]
528
- def divide_document(document, max_length):
529
- return [document[i:i+max_length] for i in range(0, len(document), max_length)]
530
-
531
- # 9. Sidebar with UI controls to review and re-run prompts and continue responses
532
- @st.cache_resource
533
- def get_table_download_link(file_path):
534
- with open(file_path, 'r') as file:
535
- data = file.read()
536
-
537
- b64 = base64.b64encode(data.encode()).decode()
538
- file_name = os.path.basename(file_path)
539
- ext = os.path.splitext(file_name)[1] # get the file extension
540
- if ext == '.txt':
541
- mime_type = 'text/plain'
542
- elif ext == '.py':
543
- mime_type = 'text/plain'
544
- elif ext == '.xlsx':
545
- mime_type = 'text/plain'
546
- elif ext == '.csv':
547
- mime_type = 'text/plain'
548
- elif ext == '.htm':
549
- mime_type = 'text/html'
550
- elif ext == '.md':
551
- mime_type = 'text/markdown'
552
- elif ext == '.wav':
553
- mime_type = 'audio/wav'
554
- else:
555
- mime_type = 'application/octet-stream' # general binary data type
556
- href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
557
- return href
558
-
559
-
560
- def CompressXML(xml_text):
561
- root = ET.fromstring(xml_text)
562
- for elem in list(root.iter()):
563
- if isinstance(elem.tag, str) and 'Comment' in elem.tag:
564
- elem.parent.remove(elem)
565
- return ET.tostring(root, encoding='unicode', method="xml")
566
-
567
- # 10. Read in and provide UI for past files
568
- @st.cache_resource
569
- def read_file_content(file,max_length):
570
- if file.type == "application/json":
571
- content = json.load(file)
572
- return str(content)
573
- elif file.type == "text/html" or file.type == "text/htm":
574
- content = BeautifulSoup(file, "html.parser")
575
- return content.text
576
- elif file.type == "application/xml" or file.type == "text/xml":
577
- tree = ET.parse(file)
578
- root = tree.getroot()
579
- xml = CompressXML(ET.tostring(root, encoding='unicode'))
580
- return xml
581
- elif file.type == "text/markdown" or file.type == "text/md":
582
- md = mistune.create_markdown()
583
- content = md(file.read().decode())
584
- return content
585
- elif file.type == "text/plain":
586
- return file.getvalue().decode()
587
- else:
588
- return ""
589
-
590
- # 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
591
- @st.cache_resource
592
- def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'):
593
- model = model_choice
594
- conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
595
- conversation.append({'role': 'user', 'content': prompt})
596
- if len(document_section)>0:
597
- conversation.append({'role': 'assistant', 'content': document_section})
598
- start_time = time.time()
599
- report = []
600
- res_box = st.empty()
601
- collected_chunks = []
602
- collected_messages = []
603
-
604
- st.write('LLM stream ' + 'gpt-3.5-turbo')
605
- for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
606
- collected_chunks.append(chunk)
607
- chunk_message = chunk['choices'][0]['delta']
608
- collected_messages.append(chunk_message)
609
- content=chunk["choices"][0].get("delta",{}).get("content")
610
- try:
611
- report.append(content)
612
- if len(content) > 0:
613
- result = "".join(report).strip()
614
- res_box.markdown(f'*{result}*')
615
- except:
616
- st.write(' ')
617
- full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
618
- st.write("Elapsed time:")
619
- st.write(time.time() - start_time)
620
- return full_reply_content
621
-
622
- # 12. Embedding VectorDB for LLM query of documents to text to compress inputs and prompt together as Chat memory using Langchain
623
- @st.cache_resource
624
- def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
625
- conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
626
- conversation.append({'role': 'user', 'content': prompt})
627
- if len(file_content)>0:
628
- conversation.append({'role': 'assistant', 'content': file_content})
629
- response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
630
- return response['choices'][0]['message']['content']
631
-
632
- def extract_mime_type(file):
633
- if isinstance(file, str):
634
- pattern = r"type='(.*?)'"
635
- match = re.search(pattern, file)
636
- if match:
637
- return match.group(1)
638
- else:
639
- raise ValueError(f"Unable to extract MIME type from {file}")
640
- elif isinstance(file, streamlit.UploadedFile):
641
- return file.type
642
- else:
643
- raise TypeError("Input should be a string or a streamlit.UploadedFile object")
644
-
645
- def extract_file_extension(file):
646
- # get the file name directly from the UploadedFile object
647
- file_name = file.name
648
- pattern = r".*?\.(.*?)$"
649
- match = re.search(pattern, file_name)
650
- if match:
651
- return match.group(1)
652
- else:
653
- raise ValueError(f"Unable to extract file extension from {file_name}")
654
-
655
- # Normalize input as text from PDF and other formats
656
- @st.cache_resource
657
- def pdf2txt(docs):
658
- text = ""
659
- for file in docs:
660
- file_extension = extract_file_extension(file)
661
- st.write(f"File type extension: {file_extension}")
662
- if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
663
- text += file.getvalue().decode('utf-8')
664
- elif file_extension.lower() == 'pdf':
665
- from PyPDF2 import PdfReader
666
- pdf = PdfReader(BytesIO(file.getvalue()))
667
- for page in range(len(pdf.pages)):
668
- text += pdf.pages[page].extract_text() # new PyPDF2 syntax
669
- return text
670
-
671
- def txt2chunks(text):
672
- text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
673
- return text_splitter.split_text(text)
674
-
675
- # Vector Store using FAISS
676
- @st.cache_resource
677
- def vector_store(text_chunks):
678
- embeddings = OpenAIEmbeddings(openai_api_key=key)
679
- return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
680
-
681
- # Memory and Retrieval chains
682
- @st.cache_resource
683
- def get_chain(vectorstore):
684
- llm = ChatOpenAI()
685
- memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
686
- return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
687
-
688
- def process_user_input(user_question):
689
- response = st.session_state.conversation({'question': user_question})
690
- st.session_state.chat_history = response['chat_history']
691
- for i, message in enumerate(st.session_state.chat_history):
692
- template = user_template if i % 2 == 0 else bot_template
693
- st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
694
- filename = generate_filename(user_question, 'txt')
695
- response = message.content
696
- user_prompt = user_question
697
- create_file(filename, user_prompt, response, should_save)
698
-
699
- def divide_prompt(prompt, max_length):
700
- words = prompt.split()
701
- chunks = []
702
- current_chunk = []
703
- current_length = 0
704
- for word in words:
705
- if len(word) + current_length <= max_length:
706
- current_length += len(word) + 1
707
- current_chunk.append(word)
708
- else:
709
- chunks.append(' '.join(current_chunk))
710
- current_chunk = [word]
711
- current_length = len(word)
712
- chunks.append(' '.join(current_chunk))
713
- return chunks
714
-
715
-
716
- # 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it
717
-
718
- @st.cache_resource
719
- def create_zip_of_files(files):
720
- zip_name = "all_files.zip"
721
- with zipfile.ZipFile(zip_name, 'w') as zipf:
722
- for file in files:
723
- zipf.write(file)
724
- return zip_name
725
-
726
- @st.cache_resource
727
- def get_zip_download_link(zip_file):
728
- with open(zip_file, 'rb') as f:
729
- data = f.read()
730
- b64 = base64.b64encode(data).decode()
731
- href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
732
- return href
733
-
734
- # 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
735
- # My Inference Endpoint
736
- API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
737
- # Original
738
- API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
739
- MODEL2 = "openai/whisper-small.en"
740
- MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
741
- #headers = {
742
- # "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
743
- # "Content-Type": "audio/wav"
744
- #}
745
- # HF_KEY = os.getenv('HF_KEY')
746
- HF_KEY = st.secrets['HF_KEY']
747
- headers = {
748
- "Authorization": f"Bearer {HF_KEY}",
749
- "Content-Type": "audio/wav"
750
- }
751
-
752
- #@st.cache_resource
753
- def query(filename):
754
- with open(filename, "rb") as f:
755
- data = f.read()
756
- response = requests.post(API_URL_IE, headers=headers, data=data)
757
- return response.json()
758
-
759
- def generate_filename(prompt, file_type):
760
- central = pytz.timezone('US/Central')
761
- safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
762
- replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
763
- safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
764
- return f"{safe_date_time}_{safe_prompt}.{file_type}"
765
-
766
- # 15. Audio recorder to Wav file
767
- def save_and_play_audio(audio_recorder):
768
- audio_bytes = audio_recorder()
769
- if audio_bytes:
770
- filename = generate_filename("Recording", "wav")
771
- with open(filename, 'wb') as f:
772
- f.write(audio_bytes)
773
- st.audio(audio_bytes, format="audio/wav")
774
- return filename
775
-
776
- # 16. Speech transcription to file output
777
- def transcribe_audio(filename):
778
- output = query(filename)
779
- return output
780
-
781
- def whisper_main():
782
- #st.title("Speech to Text")
783
- #st.write("Record your speech and get the text.")
784
-
785
- # Audio, transcribe, GPT:
786
- filename = save_and_play_audio(audio_recorder)
787
- if filename is not None:
788
- transcription = transcribe_audio(filename)
789
- try:
790
- transcript = transcription['text']
791
- st.write(transcript)
792
-
793
- except:
794
- transcript=''
795
- st.write(transcript)
796
-
797
-
798
- # Whisper to GPT: New!! ---------------------------------------------------------------------
799
- st.write('Reasoning with your inputs with GPT..')
800
- response = chat_with_model(transcript)
801
- st.write('Response:')
802
- st.write(response)
803
-
804
- filename = generate_filename(response, "txt")
805
- create_file(filename, transcript, response, should_save)
806
- # Whisper to GPT: New!! ---------------------------------------------------------------------
807
-
808
-
809
- # Whisper to Llama:
810
- response = StreamLLMChatResponse(transcript)
811
- filename_txt = generate_filename(transcript, "md")
812
- create_file(filename_txt, transcript, response, should_save)
813
-
814
- filename_wav = filename_txt.replace('.txt', '.wav')
815
- import shutil
816
- try:
817
- if os.path.exists(filename):
818
- shutil.copyfile(filename, filename_wav)
819
- except:
820
- st.write('.')
821
-
822
- if os.path.exists(filename):
823
- os.remove(filename)
824
-
825
- #st.experimental_rerun()
826
- #except:
827
- # st.write('Starting Whisper Model on GPU. Please retry in 30 seconds.')
828
-
829
-
830
-
831
- # Sample function to demonstrate a response, replace with your own logic
832
- def StreamMedChatResponse(topic):
833
- st.write(f"Showing resources or questions related to: {topic}")
834
-
835
-
836
-
837
- def add_medical_exam_buttons():
838
- # Medical exam terminology descriptions
839
- descriptions = {
840
- "White Blood Cells 🌊": "3 Q&A with emojis about types, facts, function, inputs and outputs of white blood cells 🎥",
841
- "CT Imaging🦠": "3 Q&A with emojis on CT Imaging post surgery, how to, what to look for 💊",
842
- "Hematoma 💉": "3 Q&A with emojis about hematoma and infection care and study including bacteria cultures and tests or labs💪",
843
- "Post Surgery Wound Care 🍌": "3 Q&A with emojis on wound care, and good bedside manner 🩸",
844
- "Healing and humor 💊": "3 Q&A with emojis on stories and humor about healing and caregiving 🚑",
845
- "Psychology of bedside manner 🧬": "3 Q&A with emojis on bedside manner and how to make patients feel at ease🛠",
846
- "CT scan 💊": "3 Q&A with analysis on infection using CT scan and packing for skin, cellulitus and fascia 🩺"
847
- }
848
-
849
- # Expander for medical topics
850
- with st.expander("Medical Licensing Exam Topics 📚", expanded=False):
851
- st.markdown("🩺 **Important**: Variety of topics for medical licensing exams.")
852
-
853
- # Create buttons for each description with unique keys
854
- for idx, (label, content) in enumerate(descriptions.items()):
855
- button_key = f"button_{idx}"
856
- if st.button(label, key=button_key):
857
- st.write(f"Running {label}")
858
- input='Create markdown outline for definition of topic ' + label + ' also short quiz with appropriate emojis and definitions for: ' + content
859
- response=StreamLLMChatResponse(input)
860
- filename = generate_filename(response, 'txt')
861
- create_file(filename, input, response, should_save)
862
-
863
- def add_medical_exam_buttons2():
864
- with st.expander("Medical Licensing Exam Topics 📚", expanded=False):
865
- st.markdown("🩺 **Important**: This section provides a variety of medical topics that are often encountered in medical licensing exams.")
866
-
867
- # Define medical exam terminology descriptions
868
- descriptions = {
869
- "White Blood Cells 🌊": "3 Questions and Answers with emojis about white blood cells 🎥",
870
- "CT Imaging🦠": "3 Questions and Answers with emojis about CT Imaging of post surgery abscess, hematoma, and cerosanguiness fluid 💊",
871
- "Hematoma 💉": "3 Questions and Answers with emojis about hematoma and infection and how heat helps white blood cells 💪",
872
- "Post Surgery Wound Care 🍌": "3 Questions and Answers with emojis about wound care and how to help as a caregiver🩸",
873
- "Healing and humor 💊": "3 Questions and Answers with emojis on the use of stories and humor to help patients and family 🚑",
874
- "Psychology of bedside manner 🧬": "3 Questions and Answers with emojis about good bedside manner 🛠",
875
- "CT scan 💊": "3 Questions and Answers with analysis of bacteria and understanding infection using cultures and CT scan 🩺"
876
- }
877
-
878
- # Create columns
879
- col1, col2, col3, col4 = st.columns([1, 1, 1, 1], gap="small")
880
-
881
- # Add buttons to columns
882
- if col1.button("Ultrasound with Doppler 🌊"):
883
- StreamLLMChatResponse(descriptions["Ultrasound with Doppler 🌊"])
884
-
885
- if col2.button("Oseltamivir 🦠"):
886
- StreamLLMChatResponse(descriptions["Oseltamivir 🦠"])
887
-
888
- if col3.button("IM Epinephrine 💉"):
889
- StreamLLMChatResponse(descriptions["IM Epinephrine 💉"])
890
-
891
- if col4.button("Hypokalemia 🍌"):
892
- StreamLLMChatResponse(descriptions["Hypokalemia 🍌"])
893
-
894
- col5, col6, col7, col8 = st.columns([1, 1, 1, 1], gap="small")
895
-
896
- if col5.button("Succinylcholine 💊"):
897
- StreamLLMChatResponse(descriptions["Succinylcholine 💊"])
898
-
899
- if col6.button("Phosphoinositol System 🧬"):
900
- StreamLLMChatResponse(descriptions["Phosphoinositol System 🧬"])
901
-
902
- if col7.button("Ramipril 💊"):
903
- StreamLLMChatResponse(descriptions["Ramipril 💊"])
904
-
905
-
906
-
907
- # 17. Main
908
- def main():
909
- prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each."
910
- # Add Wit and Humor buttons
911
- # add_witty_humor_buttons()
912
- # add_medical_exam_buttons()
913
-
914
- with st.expander("Prompts 📚", expanded=False):
915
- example_input = st.text_input("Enter your prompt text for Llama:", value=prompt, help="Enter text to get a response from DromeLlama.")
916
- if st.button("Run Prompt With Llama model", help="Click to run the prompt."):
917
- try:
918
- response=StreamLLMChatResponse(example_input)
919
- create_file(filename, example_input, response, should_save)
920
- except:
921
- st.write('Llama model is asleep. Starting now on A10 GPU. Please wait one minute then retry. KEDA triggered.')
922
-
923
- openai.api_key = os.getenv('OPENAI_API_KEY')
924
- if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY']
925
-
926
- menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
927
- choice = st.sidebar.selectbox("Output File Type:", menu)
928
-
929
- model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
930
-
931
- user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
932
- collength, colupload = st.columns([2,3]) # adjust the ratio as needed
933
- with collength:
934
- max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
935
- with colupload:
936
- uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
937
- document_sections = deque()
938
- document_responses = {}
939
- if uploaded_file is not None:
940
- file_content = read_file_content(uploaded_file, max_length)
941
- document_sections.extend(divide_document(file_content, max_length))
942
- if len(document_sections) > 0:
943
- if st.button("👁️ View Upload"):
944
- st.markdown("**Sections of the uploaded file:**")
945
- for i, section in enumerate(list(document_sections)):
946
- st.markdown(f"**Section {i+1}**\n{section}")
947
- st.markdown("**Chat with the model:**")
948
- for i, section in enumerate(list(document_sections)):
949
- if i in document_responses:
950
- st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
951
- else:
952
- if st.button(f"Chat about Section {i+1}"):
953
- st.write('Reasoning with your inputs...')
954
- #response = chat_with_model(user_prompt, section, model_choice)
955
- st.write('Response:')
956
- st.write(response)
957
- document_responses[i] = response
958
- filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
959
- create_file(filename, user_prompt, response, should_save)
960
- st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
961
-
962
-
963
- if st.button('💬 Chat'):
964
- st.write('Reasoning with your inputs...')
965
- user_prompt_sections = divide_prompt(user_prompt, max_length)
966
- full_response = ''
967
- for prompt_section in user_prompt_sections:
968
- response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
969
- full_response += response + '\n' # Combine the responses
970
- response = full_response
971
- st.write('Response:')
972
- st.write(response)
973
- filename = generate_filename(user_prompt, choice)
974
- create_file(filename, user_prompt, response, should_save)
975
-
976
- # Compose a file sidebar of markdown md files:
977
- all_files = glob.glob("*.md")
978
- all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
979
- all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
980
- if st.sidebar.button("🗑 Delete All Text"):
981
- for file in all_files:
982
- os.remove(file)
983
- st.experimental_rerun()
984
- if st.sidebar.button("⬇️ Download All"):
985
- zip_file = create_zip_of_files(all_files)
986
- st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
987
- file_contents=''
988
- next_action=''
989
- for file in all_files:
990
- col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
991
- with col1:
992
- if st.button("🌐", key="md_"+file): # md emoji button
993
- with open(file, 'r') as f:
994
- file_contents = f.read()
995
- next_action='md'
996
- with col2:
997
- st.markdown(get_table_download_link(file), unsafe_allow_html=True)
998
- with col3:
999
- if st.button("📂", key="open_"+file): # open emoji button
1000
- with open(file, 'r') as f:
1001
- file_contents = f.read()
1002
- next_action='open'
1003
- with col4:
1004
- if st.button("🔍", key="read_"+file): # search emoji button
1005
- with open(file, 'r') as f:
1006
- file_contents = f.read()
1007
- next_action='search'
1008
- with col5:
1009
- if st.button("🗑", key="delete_"+file):
1010
- os.remove(file)
1011
- st.experimental_rerun()
1012
-
1013
-
1014
- if len(file_contents) > 0:
1015
- if next_action=='open':
1016
- file_content_area = st.text_area("File Contents:", file_contents, height=500)
1017
- if next_action=='md':
1018
- st.markdown(file_contents)
1019
-
1020
- buttonlabel = '🔍Run with Llama and GPT.'
1021
- if st.button(key='RunWithLlamaandGPT', label = buttonlabel):
1022
- user_prompt = file_contents
1023
-
1024
- # Llama versus GPT Battle!
1025
- all=""
1026
- try:
1027
- st.write('🔍Running with Llama.')
1028
- response = StreamLLMChatResponse(file_contents)
1029
- filename = generate_filename(user_prompt, "md")
1030
- create_file(filename, file_contents, response, should_save)
1031
- all=response
1032
- #SpeechSynthesis(response)
1033
- except:
1034
- st.markdown('Llama is sleeping. Restart ETA 30 seconds.')
1035
-
1036
- # gpt
1037
- try:
1038
- st.write('🔍Running with GPT.')
1039
- response2 = chat_with_model(user_prompt, file_contents, model_choice)
1040
- filename2 = generate_filename(file_contents, choice)
1041
- create_file(filename2, user_prompt, response, should_save)
1042
- all=all+response2
1043
- #SpeechSynthesis(response2)
1044
- except:
1045
- st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
1046
-
1047
- SpeechSynthesis(all)
1048
-
1049
-
1050
- if next_action=='search':
1051
- file_content_area = st.text_area("File Contents:", file_contents, height=500)
1052
- st.write('🔍Running with Llama and GPT.')
1053
-
1054
- user_prompt = file_contents
1055
-
1056
- # Llama versus GPT Battle!
1057
- all=""
1058
- try:
1059
- st.write('🔍Running with Llama.')
1060
- response = StreamLLMChatResponse(file_contents)
1061
- filename = generate_filename(user_prompt, ".md")
1062
- create_file(filename, file_contents, response, should_save)
1063
- all=response
1064
- #SpeechSynthesis(response)
1065
- except:
1066
- st.markdown('Llama is sleeping. Restart ETA 30 seconds.')
1067
-
1068
- # gpt
1069
- try:
1070
- st.write('🔍Running with GPT.')
1071
- response2 = chat_with_model(user_prompt, file_contents, model_choice)
1072
- filename2 = generate_filename(file_contents, choice)
1073
- create_file(filename2, user_prompt, response, should_save)
1074
- all=all+response2
1075
- #SpeechSynthesis(response2)
1076
- except:
1077
- st.markdown('GPT is sleeping. Restart ETA 30 seconds.')
1078
-
1079
- SpeechSynthesis(all)
1080
-
1081
-
1082
- # Function to encode file to base64
1083
- def get_base64_encoded_file(file_path):
1084
- with open(file_path, "rb") as file:
1085
- return base64.b64encode(file.read()).decode()
1086
-
1087
- # Function to create a download link
1088
- def get_audio_download_link(file_path):
1089
- base64_file = get_base64_encoded_file(file_path)
1090
- return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">⬇️ Download Audio</a>'
1091
-
1092
- # Compose a file sidebar of past encounters
1093
- all_files = glob.glob("*.wav")
1094
- all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
1095
- all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
1096
-
1097
- filekey = 'delall'
1098
- if st.sidebar.button("🗑 Delete All Audio", key=filekey):
1099
- for file in all_files:
1100
- os.remove(file)
1101
- st.experimental_rerun()
1102
-
1103
- for file in all_files:
1104
- col1, col2 = st.sidebar.columns([6, 1]) # adjust the ratio as needed
1105
- with col1:
1106
- st.markdown(file)
1107
- if st.button("🎵", key="play_" + file): # play emoji button
1108
- audio_file = open(file, 'rb')
1109
- audio_bytes = audio_file.read()
1110
- st.audio(audio_bytes, format='audio/wav')
1111
- #st.markdown(get_audio_download_link(file), unsafe_allow_html=True)
1112
- #st.text_input(label="", value=file)
1113
- with col2:
1114
- if st.button("🗑", key="delete_" + file):
1115
- os.remove(file)
1116
- st.experimental_rerun()
1117
-
1118
-
1119
-
1120
- # Feedback
1121
- # Step: Give User a Way to Upvote or Downvote
1122
- GiveFeedback=False
1123
- if GiveFeedback:
1124
- with st.expander("Give your feedback 👍", expanded=False):
1125
-
1126
- feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote"))
1127
- if feedback == "👍 Upvote":
1128
- st.write("You upvoted 👍. Thank you for your feedback!")
1129
- else:
1130
- st.write("You downvoted 👎. Thank you for your feedback!")
1131
-
1132
- load_dotenv()
1133
- st.write(css, unsafe_allow_html=True)
1134
- st.header("Chat with documents :books:")
1135
- user_question = st.text_input("Ask a question about your documents:")
1136
- if user_question:
1137
- process_user_input(user_question)
1138
- with st.sidebar:
1139
- st.subheader("Your documents")
1140
- docs = st.file_uploader("import documents", accept_multiple_files=True)
1141
- with st.spinner("Processing"):
1142
- raw = pdf2txt(docs)
1143
- if len(raw) > 0:
1144
- length = str(len(raw))
1145
- text_chunks = txt2chunks(raw)
1146
- vectorstore = vector_store(text_chunks)
1147
- st.session_state.conversation = get_chain(vectorstore)
1148
- st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
1149
- filename = generate_filename(raw, 'txt')
1150
- create_file(filename, raw, '', should_save)
1151
-
1152
- # Relocated! Hope you like your new space - enjoy!
1153
- # Display instructions and handle query parameters
1154
- st.markdown("## Glossary Lookup\nEnter a term in the URL query, like `?q=Nanotechnology` or `?query=Martian Syndicate`.")
1155
- try:
1156
- query_params = st.query_params
1157
- #query = (query_params.get('q') or query_params.get('query') or [''])[0]
1158
- query = (query_params.get('q') or query_params.get('query') or [''])
1159
- st.markdown('# Running query: ' + query)
1160
- if query: search_glossary(query)
1161
- except:
1162
- st.markdown('No glossary lookup')
1163
-
1164
- # Display the glossary grid
1165
- st.title("Transhuman Space Glossary 🌌")
1166
- display_glossary_grid(transhuman_glossary)
1167
-
1168
- st.title("🌌🚀 Transhuman Space Encyclopedia")
1169
- st.markdown("## Explore the universe of Transhuman Space through interactive storytelling and encyclopedic knowledge.🌠")
1170
-
1171
- display_buttons_with_scores()
1172
-
1173
- display_images_and_wikipedia_summaries()
1174
-
1175
- # Assuming the transhuman_glossary and other setup code remains the same
1176
- #st.write("Current Query Parameters:", st.query_params)
1177
- #st.markdown("### Query Parameters - These Deep Link Map to Remixable Methods, Navigate or Trigger Functionalities")
1178
-
1179
- # Example: Using query parameters to navigate or trigger functionalities
1180
- if 'action' in st.query_params:
1181
- action = st.query_params()['action'][0] # Get the first (or only) 'action' parameter
1182
- if action == 'show_message':
1183
- st.success("Showing a message because 'action=show_message' was found in the URL.")
1184
- elif action == 'clear':
1185
- clear_query_params()
1186
- st.experimental_rerun()
1187
-
1188
- # Handling repeated keys
1189
- if 'multi' in st.query_params:
1190
- multi_values = get_all_query_params('multi')
1191
- st.write("Values for 'multi':", multi_values)
1192
-
1193
- # Manual entry for demonstration
1194
- st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2")
1195
-
1196
- if 'query' in st.query_params:
1197
- query = st.query_params['query'][0] # Get the query parameter
1198
- # Display content or image based on the query
1199
- display_content_or_image(query)
1200
-
1201
- # Add a clear query parameters button for convenience
1202
- if st.button("Clear Query Parameters", key='ClearQueryParams'):
1203
- # This will clear the browser URL's query parameters
1204
- st.experimental_set_query_params
1205
- st.experimental_rerun()
1206
-
1207
- # 18. Run AI Pipeline
1208
- if __name__ == "__main__":
1209
- whisper_main()
1210
- main()