Spaces:
Runtime error
Runtime error
File size: 4,213 Bytes
6e969ba 5d39a3e 6e969ba 9103f91 5d39a3e 9103f91 6e969ba 5d39a3e 6e969ba aef72ef 6e969ba 387d633 6e969ba 5d39a3e 6e969ba 9103f91 11b82b8 6e969ba 11b82b8 5d39a3e a06050e 9103f91 aef72ef 5f27703 aef72ef a06050e f8850ff a06050e 9103f91 ba84adc f8850ff 4e5098f f8850ff 387d633 6e969ba 0979664 5d39a3e f3a97a2 9103f91 6e969ba 9103f91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import streamlit as st
import openai
import os
import base64
import glob
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
import json
# from dotenv import load_dotenv
# load_dotenv()
openai.api_key = os.getenv('OPENAI_KEY')
def chat_with_model(prompts):
model = "gpt-3.5-turbo"
#model = "gpt-4-32k"
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.extend([{'role': 'user', 'content': prompt} for prompt in prompts])
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def generate_filename(prompt):
safe_date_time = datetime.now().strftime("%m%d_%H%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:30]
return f"{safe_date_time}_{safe_prompt}.txt"
def create_file(filename, prompt, response):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
def get_table_download_link_old(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
href = f'<a href="data:file/htm;base64,{b64}" target="_blank" download="{os.path.basename(file_path)}">{os.path.basename(file_path)}</a>'
return href
def get_table_download_link(file_path):
import os
import base64
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
#return ET.tostring(root, encoding='unicode', method="xml")
return ET.tostring(root, encoding='unicode', method="xml")[:16000]
def read_file_content(file):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
#return ET.tostring(root, encoding='unicode')
return CompressXML(ET.tostring(root, encoding='unicode'))
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
st.title("Chat with AI")
prompts = ['']
user_prompt = st.text_area("Your question:", '', height=120)
uploaded_file = st.file_uploader("Choose a file", type=["xml", "json", "htm", "txt"])
if user_prompt:
prompts.append(user_prompt)
if uploaded_file is not None:
file_content = read_file_content(uploaded_file)
st.markdown(f"**Content Added to Prompt:**\n{file_content}")
prompts.append(file_content)
if st.button('Chat'):
st.write('Chatting with GPT-3...')
response = chat_with_model(prompts)
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
htm_files = glob.glob("*.txt")
for file in htm_files:
st.sidebar.markdown(get_table_download_link(file), unsafe_allow_html=True)
# if st.sidebar.button(f"Delete {file}"):
if st.sidebar.button("π Delete"):
os.remove(file)
st.experimental_rerun()
if __name__ == "__main__":
main() |