File size: 6,186 Bytes
6e969ba
 
 
 
 
acc0c63
a88d27d
bf65701
9f0de14
6e969ba
 
9103f91
 
9f0de14
5d39a3e
6e969ba
988a5cb
 
2e67686
e12378e
 
b635eaa
 
2e67686
b635eaa
2e67686
 
 
 
133f625
e12378e
2e67686
e12378e
988a5cb
29b3073
bf65701
5e39c57
 
29b3073
 
10369ed
29b3073
 
 
 
 
 
 
 
 
6e969ba
9f0de14
 
 
 
 
 
 
 
 
 
 
 
 
 
e18e5b1
5d39a3e
 
 
 
 
a260e6a
5d39a3e
 
 
 
 
 
 
a260e6a
5d39a3e
 
 
9f0de14
4c38937
9103f91
 
 
 
4c38937
d3f3e34
34128f5
f8850ff
 
 
a88d27d
f8850ff
 
a06050e
9103f91
 
db9b250
8d8fc5c
a88d27d
 
 
 
f8850ff
 
 
 
 
 
e18e5b1
a88d27d
9f0de14
f8850ff
9f0de14
 
a260e6a
 
 
9f0de14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a260e6a
55c04e3
0d44617
9f0de14
a260e6a
 
5751846
a260e6a
 
 
9f0de14
29b3073
 
a260e6a
9337711
 
 
 
 
 
 
6e969ba
9f0de14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque

openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(
    page_title="GPT Streamlit Document Reasoner",
    layout="wide")

menu = ["txt", "htm", "md", "py"]
choice = st.sidebar.selectbox("Output file type:", menu)
choicePrefix = "Output file type is "
if choice == "txt":
     st.sidebar.write(choicePrefix + "Text File.")
elif choice == "htm":
     st.sidebar.write(choicePrefix + "HTML5.")
elif choice == "md":
     st.sidebar.write(choicePrefix + "Markdown.")
elif choice == "py":
     st.sidebar.write(choicePrefix + "Python Code.")

max_length = st.sidebar.slider("Max document length", min_value=1000, max_value=32000, value=2000, step=1000)

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%I%M")  
    safe_prompt = "".join(x for x in prompt if x.isalnum())[:28]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def create_file(filename, prompt, response):
    if filename.endswith(".txt"):
        with open(filename, 'w') as file:
            file.write(f"Prompt:\n{prompt}\nResponse:\n{response}")
    elif filename.endswith(".htm"):
        with open(filename, 'w') as file:
            file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
    elif filename.endswith(".md"):
        with open(filename, 'w') as file:
            file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")

def truncate_document(document, length):
    return document[:length]

def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def chat_with_model(prompt, document_section):
    model = "gpt-3.5-turbo"
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    conversation.append({'role': 'assistant', 'content': document_section})
    response = openai.ChatCompletion.create(model=model, messages=conversation)
    return response['choices'][0]['message']['content']


def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        data = file.read()
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href


def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")
    
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

def main():
    user_prompt = st.text_area("Your question:", '', height=120)
    uploaded_file = st.file_uploader("Choose a file", type=["xml", "json", "html", "htm", "md", "txt"])
    max_length = 4000

    document_sections = deque()
    document_responses = {}

    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))

    if len(document_sections) > 0:
        st.markdown("**Sections of the uploaded file:**")
        for i, section in enumerate(list(document_sections)):
            st.markdown(f"**Section {i+1}**\n{section}")

        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Thinking and Reasoning with your inputs...')
                    response = chat_with_model(user_prompt, section)
                    st.write('Response:')
                    st.write(response)
                    document_responses[i] = response

    if st.button('πŸ’¬ Chat'):
        st.write('Thinking and Reasoning with your inputs...')
        response = chat_with_model(user_prompt, ''.join(list(document_sections)))
        st.write('Response:')
        st.write(response)
        
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    all_files = glob.glob("*.txt") + glob.glob("*.htm") + glob.glob("*.md")
    for file in all_files:
        col1, col2 = st.sidebar.columns([4,1])  # adjust the ratio as needed
        with col1:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col2:
            if st.button("πŸ—‘", key=file):
                os.remove(file)
                st.experimental_rerun()

if __name__ == "__main__":
    main()