awacke1's picture
Update app.py
d3f3e34
raw
history blame
5.8 kB
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
#from streamlit.theme import Theme
openai.api_key = os.getenv('OPENAI_KEY')
#st.set_page_config(page_title='GPT Streamlit Document Reasoner', layout='wide')
st.set_page_config(
page_title="GPT Streamlit Document Reasoner",
layout="wide",
# theme=Theme(
# primary_color="#F63366",
# secondary_background_color="#F0F2F6",
# text_color="#262730",
# font="sans serif",
# ),
)
st.title("Chat with AI")
# Create a sidebar with menus
# st.sidebar.title("Menu")
# menu = ["Option 1", "Option 2", "Option 3"]
# choice = st.sidebar.selectbox("Choose an option", menu)
# if choice == "Option 1":
# st.sidebar.write("You selected Option 1")
#elif choice == "Option 2":
# st.sidebar.write("You selected Option 2")
#elif choice == "Option 3":
# st.sidebar.write("You selected Option 3")
# Create a slider in the sidebar
max_length = st.sidebar.slider(
"Max document length", min_value=3000, max_value=24000, value=3000, step=1000
)
# Truncate document
def truncate_document(document, length):
return document[:length]
# Assume you have a document called my_document
# my_document = 'your long string here'
# truncated_document = truncate_document(my_document, max_length)
# st.write(f"Truncated document: {truncated_document}")
def chat_with_model(prompts):
model = "gpt-3.5-turbo"
#model = "gpt-4-32k" # 32k tokens between prompt and inference tokens
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.extend([{'role': 'user', 'content': prompt} for prompt in prompts])
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def generate_filename(prompt):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%I_%M_%p")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:30]
return f"{safe_date_time}_{safe_prompt}.txt"
def create_file(filename, prompt, response):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
def get_table_download_link_old(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
href = f'<a href="data:file/htm;base64,{b64}" target="_blank" download="{os.path.basename(file_path)}">{os.path.basename(file_path)}</a>'
return href
def get_table_download_link(file_path):
import os
import base64
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
#return ET.tostring(root, encoding='unicode', method="xml")
return ET.tostring(root, encoding='unicode', method="xml")[:max_length]
def read_file_content(file):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
#return ET.tostring(root, encoding='unicode')
return CompressXML(ET.tostring(root, encoding='unicode'))
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
prompts = ['']
file_content = ""
user_prompt = st.text_area("Your question:", '', height=120)
uploaded_file = st.file_uploader("Choose a file", type=["xml", "json", "html", "htm", "md", "txt"])
if user_prompt:
prompts.append(user_prompt)
if uploaded_file is not None:
file_content = read_file_content(uploaded_file)
prompts.append(file_content)
if st.button('๐Ÿ’ฌ Chat'):
st.write('Chatting with GPT-3...')
response = chat_with_model(prompts)
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if len(file_content) > 0:
st.markdown(f"**Content Added to Prompt:**\n{file_content}")
htm_files = glob.glob("*.txt")
for file in htm_files:
st.sidebar.markdown(get_table_download_link(file), unsafe_allow_html=True)
if st.sidebar.button(f"๐Ÿ—‘Delete {file}"):
#if st.sidebar.button("๐Ÿ—‘ Delete"):
os.remove(file)
st.experimental_rerun()
if __name__ == "__main__":
main()