awacke1's picture
Update app.py
f8850ff
raw
history blame
6.35 kB
import streamlit as st
import openai
import os
import base64
import glob
import json
from xml.etree import ElementTree as ET
from datetime import datetime
from dotenv import load_dotenv
from openai import ChatCompletion
load_dotenv()
openai.api_key = os.getenv('OPENAI_KEY')
def chat_with_model(prompts):
model = "gpt-3.5-turbo"
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.extend([{'role': 'user', 'content': prompt} for prompt in prompts])
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def generate_filename(prompt):
safe_date_time = datetime.now().strftime("%m_%d_%H_%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:50]
return f"{safe_date_time}_{safe_prompt}.htm"
def create_file(filename, prompt, response):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
href = f'<a href="data:file/htm;base64,{b64}" target="_blank" download="{os.path.basename(file_path)}">{os.path.basename(file_path)}</a>'
return href
def CompressXML(xml_text):
tree = ET.ElementTree(ET.fromstring(xml_text))
for elem in tree.iter():
if isinstance(elem.tag, ET.Comment):
elem.getparent().remove(elem)
return ET.tostring(tree.getroot(), encoding='unicode')
def read_file_content(file):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
xml_text = file.getvalue().decode()
compressed_text = CompressXML(xml_text)
return compressed_text
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
st.title("Chat with AI")
prompts = ['']
user_prompt = st.text_area("Your question:", '', height=120)
uploaded_file = st.file_uploader("Choose a file", type=["xml", "json", "htm", "txt"])
if user_prompt:
prompts.append(user_prompt)
if uploaded_file is not None:
file_content = read_file_content(uploaded_file)
st.markdown(f"**Content Added to Prompt:**\n{file_content}")
prompts.append(file_content)
if st.button('Chat'):
st.write('Chatting with GPT-3...')
response = chat_with_model(prompts)
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
htm_files = glob.glob("*.htm")
for file in htm_files:
st.sidebar.mark
User
show full code listing
ChatGPT
Here is the full Python script:
python
Copy code
import streamlit as st
import openai
import os
import base64
import glob
import json
from xml.etree import ElementTree as ET
from datetime import datetime
from dotenv import load_dotenv
from openai import ChatCompletion
load_dotenv()
openai.api_key = os.getenv('OPENAI_KEY')
def chat_with_model(prompts):
model = "gpt-3.5-turbo"
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.extend([{'role': 'user', 'content': prompt} for prompt in prompts])
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def generate_filename(prompt):
safe_date_time = datetime.now().strftime("%m_%d_%H_%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:50]
return f"{safe_date_time}_{safe_prompt}.htm"
def create_file(filename, prompt, response):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
href = f'<a href="data:file/htm;base64,{b64}" target="_blank" download="{os.path.basename(file_path)}">{os.path.basename(file_path)}</a>'
return href
def CompressXML(xml_text):
tree = ET.ElementTree(ET.fromstring(xml_text))
for elem in tree.iter():
if isinstance(elem.tag, ET.Comment):
elem.getparent().remove(elem)
return ET.tostring(tree.getroot(), encoding='unicode')
def read_file_content(file):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
xml_text = file.getvalue().decode()
compressed_text = CompressXML(xml_text)
return compressed_text
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
st.title("Chat with AI")
prompts = ['']
user_prompt = st.text_area("Your question:", '', height=120)
uploaded_file = st.file_uploader("Choose a file", type=["xml", "json", "htm", "txt"])
if user_prompt:
prompts.append(user_prompt)
if uploaded_file is not None:
file_content = read_file_content(uploaded_file)
prompts.append(file_content)
if st.button('Chat'):
st.write('Chatting with GPT-3...')
response = chat_with_model(prompts)
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
htm_files = glob.glob("*.htm")
for file in htm_files:
st.sidebar.markdown(get_table_download_link(file), unsafe_allow_html=True)
if st.sidebar.button(f"Delete {file}"):
os.remove(file)
st.experimental_rerun()
if __name__ == "__main__":
main()