import streamlit as st import openai import os import base64 import glob import json import mistune import pytz from datetime import datetime from openai import ChatCompletion from xml.etree import ElementTree as ET from bs4 import BeautifulSoup #from streamlit.theme import Theme openai.api_key = os.getenv('OPENAI_KEY') #st.set_page_config(page_title='GPT Streamlit Document Reasoner', layout='wide') st.set_page_config( page_title="GPT Streamlit Document Reasoner", layout="wide", # theme=Theme( # primary_color="#F63366", # secondary_background_color="#F0F2F6", # text_color="#262730", # font="sans serif", ), ) st.title("Chat with AI") # Create a sidebar with menus st.sidebar.title("Menu") menu = ["Option 1", "Option 2", "Option 3"] choice = st.sidebar.selectbox("Choose an option", menu) if choice == "Option 1": st.sidebar.write("You selected Option 1") elif choice == "Option 2": st.sidebar.write("You selected Option 2") elif choice == "Option 3": st.sidebar.write("You selected Option 3") # Create a slider in the sidebar max_length = st.sidebar.slider( "Max document length", min_value=3000, max_value=24000, value=3000, step=1000 ) # Truncate document def truncate_document(document, length): return document[:length] # Assume you have a document called my_document # my_document = 'your long string here' # truncated_document = truncate_document(my_document, max_length) # st.write(f"Truncated document: {truncated_document}") # Create two tabs tab = st.selectbox("Choose a tab", ["Tab 1", "Tab 2"]) if tab == "Tab 1": st.header("Tab 1") st.write("This is some information for Tab 1") elif tab == "Tab 2": st.header("Tab 2") st.write("This is some information for Tab 2") def chat_with_model(prompts): model = "gpt-3.5-turbo" #model = "gpt-4-32k" # 32k tokens between prompt and inference tokens conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.extend([{'role': 'user', 'content': prompt} for prompt in prompts]) response = openai.ChatCompletion.create(model=model, messages=conversation) return response['choices'][0]['message']['content'] def generate_filename(prompt): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%I_%M_%p") safe_prompt = "".join(x for x in prompt if x.isalnum())[:30] return f"{safe_date_time}_{safe_prompt}.txt" def create_file(filename, prompt, response): with open(filename, 'w') as file: file.write(f"

Prompt:

{prompt}

Response:

{response}

") def get_table_download_link_old(file_path): with open(file_path, 'r') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() href = f'{os.path.basename(file_path)}' return href def get_table_download_link(file_path): import os import base64 with open(file_path, 'r') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] # get the file extension if ext == '.txt': mime_type = 'text/plain' elif ext == '.htm': mime_type = 'text/html' elif ext == '.md': mime_type = 'text/markdown' else: mime_type = 'application/octet-stream' # general binary data type href = f'{file_name}' return href def CompressXML(xml_text): root = ET.fromstring(xml_text) for elem in list(root.iter()): if isinstance(elem.tag, str) and 'Comment' in elem.tag: elem.parent.remove(elem) #return ET.tostring(root, encoding='unicode', method="xml") return ET.tostring(root, encoding='unicode', method="xml")[:4000] # hack - top N characters to keep context document under token max def read_file_content(file): if file.type == "application/json": content = json.load(file) return str(content) elif file.type == "text/html" or file.type == "text/htm": content = BeautifulSoup(file, "html.parser") return content.text elif file.type == "application/xml" or file.type == "text/xml": tree = ET.parse(file) root = tree.getroot() #return ET.tostring(root, encoding='unicode') return CompressXML(ET.tostring(root, encoding='unicode')) elif file.type == "text/markdown" or file.type == "text/md": md = mistune.create_markdown() content = md(file.read().decode()) return content elif file.type == "text/plain": return file.getvalue().decode() else: return "" def main(): prompts = [''] file_content = "" user_prompt = st.text_area("Your question:", '', height=120) uploaded_file = st.file_uploader("Choose a file", type=["xml", "json", "html", "htm", "md", "txt"]) if user_prompt: prompts.append(user_prompt) if uploaded_file is not None: file_content = read_file_content(uploaded_file) prompts.append(file_content) if st.button('๐Ÿ’ฌ Chat'): st.write('Chatting with GPT-3...') response = chat_with_model(prompts) st.write('Response:') st.write(response) filename = generate_filename(user_prompt) create_file(filename, user_prompt, response) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) if len(file_content) > 0: st.markdown(f"**Content Added to Prompt:**\n{file_content}") htm_files = glob.glob("*.txt") for file in htm_files: st.sidebar.markdown(get_table_download_link(file), unsafe_allow_html=True) if st.sidebar.button(f"๐Ÿ—‘Delete {file}"): #if st.sidebar.button("๐Ÿ—‘ Delete"): os.remove(file) st.experimental_rerun() if __name__ == "__main__": main()