Spaces:
Runtime error
Runtime error
File size: 8,772 Bytes
28885ca 7780269 55c675c 7780269 55c675c 28885ca 55c675c 28885ca 55c675c 28885ca 55c675c 28885ca 55c675c 28885ca 55c675c 28885ca 55c675c 28885ca 55c675c 28885ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
import requests
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide")
menu = ["txt", "htm", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%I%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:45]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
TEMPERATURE = st.sidebar.slider("Adjust Creativity:", min_value=0.1, max_value=1.0, value=0.5, step=0.1)
def chat_with_model(prompt, document_section):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
conversation.append({'role': 'assistant', 'content': document_section})
response = openai.ChatCompletion.create(model=model, messages=conversation, temperature=TEMPERATURE)
return response['choices'][0]['message']['content']
def create_file(filename, prompt, response):
if filename.endswith(".txt"):
with open(filename, 'w') as file:
file.write(f"Prompt:\n{prompt}\nResponse:\n{response}")
elif filename.endswith(".htm"):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
elif filename.endswith(".md"):
with open(filename, 'w') as file:
file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")
# Updated to auto process transcript to chatgpt in AI pipeline from Whisper to ChatGPT
def transcribe_audio(openai_key, file_path, model):
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
headers = {
"Authorization": f"Bearer {openai_key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write('Reasoning with your transcription..')
transcript=response.json().get('text')
st.write(transcript)
gptResponse = chat_with_model(transcript, '') # send transcript to ChatGPT
filename = generate_filename(transcript, choice) # auto name file with date and prompt per output file type
create_file(filename, transcript, gptResponse) # write output file
return gptResponse
else:
st.write(response.json())
st.error("Error in API call.")
return None
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
# Updated to call direct from transcription to chat inference.
filename = save_and_play_audio(audio_recorder)
if filename is not None:
#if st.button("Transcribe"):
transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
st.markdown('### Transcription:')
st.write(transcription)
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.wav':
mime_type = 'audio/x-wav'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
#max_length = 12000 - optimal for gpt35 turbo. 2x=24000 for gpt4. 8x=96000 for gpt4-32k.
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "md", "txt"])
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("ποΈ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
response = chat_with_model(user_prompt, section)
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('π¬ Chat'):
st.write('Reasoning with your inputs...')
response = chat_with_model(user_prompt, ''.join(list(document_sections)))
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
all_files = glob.glob("*.*")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
for file in all_files:
col1, col3 = st.sidebar.columns([5,1]) # adjust the ratio as needed
with col1:
try:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
except Exception as e:
st.error(f"Error occurred while processing file {file}: {str(e)}")
with col3:
if st.button("π", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
if __name__ == "__main__":
main() |