Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -29,29 +29,14 @@ def generate_filename(prompt, file_type):
|
|
29 |
safe_prompt = "".join(x for x in prompt if x.isalnum())[:45]
|
30 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
31 |
|
32 |
-
TEMPERATURE = st.sidebar.slider("Adjust Creativity:", min_value=0.1, max_value=1.0, value=0.5, step=0.1)
|
33 |
-
|
34 |
-
audio_checkbox = st.sidebar.checkbox("Audio", value=False)
|
35 |
-
|
36 |
-
if audio_checkbox:
|
37 |
-
record_audio = st.sidebar.button("Record Audio")
|
38 |
-
if record_audio:
|
39 |
-
filename = save_and_play_audio(audio_recorder)
|
40 |
-
if filename is not None:
|
41 |
-
transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
|
42 |
-
st.markdown('### Transcription:')
|
43 |
-
st.write(transcription)
|
44 |
-
else:
|
45 |
-
record_audio = False
|
46 |
-
|
47 |
def chat_with_model(prompt, document_section):
|
48 |
model = model_choice
|
49 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
50 |
conversation.append({'role': 'user', 'content': prompt})
|
51 |
conversation.append({'role': 'assistant', 'content': document_section})
|
52 |
-
response = openai.ChatCompletion.create(model=model, messages=conversation
|
53 |
return response['choices'][0]['message']['content']
|
54 |
-
|
55 |
def create_file(filename, prompt, response):
|
56 |
if filename.endswith(".txt"):
|
57 |
with open(filename, 'w') as file:
|
@@ -62,7 +47,7 @@ def create_file(filename, prompt, response):
|
|
62 |
elif filename.endswith(".md"):
|
63 |
with open(filename, 'w') as file:
|
64 |
file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")
|
65 |
-
|
66 |
# Updated to auto process transcript to chatgpt in AI pipeline from Whisper to ChatGPT
|
67 |
def transcribe_audio(openai_key, file_path, model):
|
68 |
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
|
@@ -84,7 +69,7 @@ def transcribe_audio(openai_key, file_path, model):
|
|
84 |
st.write(response.json())
|
85 |
st.error("Error in API call.")
|
86 |
return None
|
87 |
-
|
88 |
def save_and_play_audio(audio_recorder):
|
89 |
audio_bytes = audio_recorder()
|
90 |
if audio_bytes:
|
@@ -96,7 +81,7 @@ def save_and_play_audio(audio_recorder):
|
|
96 |
return None
|
97 |
|
98 |
# Updated to call direct from transcription to chat inference.
|
99 |
-
filename = save_and_play_audio(audio_recorder)
|
100 |
if filename is not None:
|
101 |
#if st.button("Transcribe"):
|
102 |
transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
|
@@ -134,7 +119,7 @@ def CompressXML(xml_text):
|
|
134 |
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
|
135 |
elem.parent.remove(elem)
|
136 |
return ET.tostring(root, encoding='unicode', method="xml")
|
137 |
-
|
138 |
def read_file_content(file,max_length):
|
139 |
if file.type == "application/json":
|
140 |
content = json.load(file)
|
@@ -165,7 +150,7 @@ def main():
|
|
165 |
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
|
166 |
with colupload:
|
167 |
uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "md", "txt"])
|
168 |
-
|
169 |
document_sections = deque()
|
170 |
document_responses = {}
|
171 |
|
@@ -174,12 +159,12 @@ def main():
|
|
174 |
document_sections.extend(divide_document(file_content, max_length))
|
175 |
|
176 |
if len(document_sections) > 0:
|
177 |
-
|
178 |
if st.button("๐๏ธ View Upload"):
|
179 |
st.markdown("**Sections of the uploaded file:**")
|
180 |
for i, section in enumerate(list(document_sections)):
|
181 |
st.markdown(f"**Section {i+1}**\n{section}")
|
182 |
-
|
183 |
st.markdown("**Chat with the model:**")
|
184 |
for i, section in enumerate(list(document_sections)):
|
185 |
if i in document_responses:
|
@@ -222,5 +207,4 @@ def main():
|
|
222 |
st.experimental_rerun()
|
223 |
|
224 |
if __name__ == "__main__":
|
225 |
-
main()
|
226 |
-
|
|
|
29 |
safe_prompt = "".join(x for x in prompt if x.isalnum())[:45]
|
30 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def chat_with_model(prompt, document_section):
|
33 |
model = model_choice
|
34 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
35 |
conversation.append({'role': 'user', 'content': prompt})
|
36 |
conversation.append({'role': 'assistant', 'content': document_section})
|
37 |
+
response = openai.ChatCompletion.create(model=model, messages=conversation)
|
38 |
return response['choices'][0]['message']['content']
|
39 |
+
|
40 |
def create_file(filename, prompt, response):
|
41 |
if filename.endswith(".txt"):
|
42 |
with open(filename, 'w') as file:
|
|
|
47 |
elif filename.endswith(".md"):
|
48 |
with open(filename, 'w') as file:
|
49 |
file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")
|
50 |
+
|
51 |
# Updated to auto process transcript to chatgpt in AI pipeline from Whisper to ChatGPT
|
52 |
def transcribe_audio(openai_key, file_path, model):
|
53 |
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
|
|
|
69 |
st.write(response.json())
|
70 |
st.error("Error in API call.")
|
71 |
return None
|
72 |
+
|
73 |
def save_and_play_audio(audio_recorder):
|
74 |
audio_bytes = audio_recorder()
|
75 |
if audio_bytes:
|
|
|
81 |
return None
|
82 |
|
83 |
# Updated to call direct from transcription to chat inference.
|
84 |
+
filename = save_and_play_audio(audio_recorder)
|
85 |
if filename is not None:
|
86 |
#if st.button("Transcribe"):
|
87 |
transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
|
|
|
119 |
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
|
120 |
elem.parent.remove(elem)
|
121 |
return ET.tostring(root, encoding='unicode', method="xml")
|
122 |
+
|
123 |
def read_file_content(file,max_length):
|
124 |
if file.type == "application/json":
|
125 |
content = json.load(file)
|
|
|
150 |
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
|
151 |
with colupload:
|
152 |
uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "md", "txt"])
|
153 |
+
|
154 |
document_sections = deque()
|
155 |
document_responses = {}
|
156 |
|
|
|
159 |
document_sections.extend(divide_document(file_content, max_length))
|
160 |
|
161 |
if len(document_sections) > 0:
|
162 |
+
|
163 |
if st.button("๐๏ธ View Upload"):
|
164 |
st.markdown("**Sections of the uploaded file:**")
|
165 |
for i, section in enumerate(list(document_sections)):
|
166 |
st.markdown(f"**Section {i+1}**\n{section}")
|
167 |
+
|
168 |
st.markdown("**Chat with the model:**")
|
169 |
for i, section in enumerate(list(document_sections)):
|
170 |
if i in document_responses:
|
|
|
207 |
st.experimental_rerun()
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
+
main()
|
|