Spaces:
Runtime error
Runtime error
File size: 5,650 Bytes
7c0cd2b 049626b 7c0cd2b 049626b 7c0cd2b 7169ae8 7c0cd2b 049626b 7c0cd2b 049626b 7c0cd2b 7169ae8 049626b ef75150 7c0cd2b 049626b 7eb442c 049626b 7eb442c 049626b 7eb442c 7c0cd2b 049626b 7c0cd2b ef75150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import streamlit as st
import openai
import os
import base64
import glob
import mistune
import pytz
import math
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(
page_title="GPT Streamlit Document Reasoner",
layout="wide")
menu = ["txt", "htm", "md", "py"]
choice = st.sidebar.selectbox("Output file type:", menu)
choicePrefix = "Output file type is "
if choice == "txt":
st.sidebar.write(choicePrefix + "Text File.")
elif choice == "htm":
st.sidebar.write(choicePrefix + "HTML5.")
elif choice == "md":
st.sidebar.write(choicePrefix + "Markdown.")
elif choice == "py":
st.sidebar.write(choicePrefix + "Python Code.")
# Create 3 columns with column 2 being twice as large
col1, col2, col3 = st.columns([1, 2, 1])
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%I%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:28]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def create_file(filename, prompt, response):
if filename.endswith(".txt"):
with open(filename, 'w') as file:
file.write(f"Prompt:\n{prompt}\nResponse:\n{response}")
elif filename.endswith(".htm"):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
elif filename.endswith(".md"):
with open(filename, 'w') as file:
file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def chat_with_model(prompt, document_section):
model = "gpt-3.5-turbo"
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
conversation.append({'role': 'assistant', 'content': document_section})
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def read_file_content(file):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
user_prompt = col1.text_area("Your question:", '', height=150)
uploaded_file = col1.file_uploader("Choose a file", type=["xml", "json", "html", "htm", "md", "txt"])
max_length = 4000
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
for i, section in enumerate(list(document_sections)):
if i in document_responses:
col2.text(f"Section {i+1} Response")
col2.text_area('', document_responses[i], height=200)
else:
if col3.button(f"Chat about Section {i+1}"):
response = chat_with_model(user_prompt, section)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if col3.button('π¬ Chat'):
response = chat_with_model(user_prompt, ''.join(list(document_sections)))
document_responses['aggregate'] = response
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
all_files = glob.glob("*.txt") + glob.glob("*.htm") + glob.glob("*.md")
for file in all_files:
col1, col2 = st.sidebar.columns([4,1]) # adjust the ratio as needed
with col1:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col2:
if st.button("π", key=file):
os.remove(file)
st.experimental_rerun()
if __name__ == "__main__":
main()
|