awacke1's picture
Update app.py
7169ae8
raw
history blame
6.03 kB
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(
page_title="GPT Streamlit Document Reasoner",
layout="wide")
menu = ["txt", "htm", "md", "py"]
choice = st.sidebar.selectbox("Output file type:", menu)
choicePrefix = "Output file type is "
if choice == "txt":
st.sidebar.write(choicePrefix + "Text File.")
elif choice == "htm":
st.sidebar.write(choicePrefix + "HTML5.")
elif choice == "md":
st.sidebar.write(choicePrefix + "Markdown.")
elif choice == "py":
st.sidebar.write(choicePrefix + "Python Code.")
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%I%M")
safe_prompt = "".join(x for x in prompt if x.isalnum())[:28]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def create_file(filename, prompt, response):
if filename.endswith(".txt"):
with open(filename, 'w') as file:
file.write(f"Prompt:\n{prompt}\nResponse:\n{response}")
elif filename.endswith(".htm"):
with open(filename, 'w') as file:
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
elif filename.endswith(".md"):
with open(filename, 'w') as file:
file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")
def chat_with_model(prompt, document_section):
model = "gpt-3.5-turbo"
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
conversation.append({'role': 'assistant', 'content': document_section})
response = openai.ChatCompletion.create(model=model, messages=conversation)
return response['choices'][0]['message']['content']
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
def read_file_content(file):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = ET.tostring(root, encoding='unicode')
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def main():
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
user_prompt = st.text_area("Your question:", '', height=120)
uploaded_file = st.file_uploader("Choose a file", type=["xml", "json", "html", "htm", "md", "txt"])
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file)
document_sections.append(file_content)
if len(document_sections) > 0:
with col2:
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Thinking and Reasoning with your inputs...')
response = chat_with_model(user_prompt, section)
document_responses[i] = response
with col3:
st.markdown("**Responses from the model:**")
for i, response in enumerate(document_responses.values()):
st.markdown(f"**Response to Section {i+1}**\n{response}")
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('πŸ’¬ Chat'):
st.write('Thinking and Reasoning with your inputs...')
response = chat_with_model(user_prompt, ''.join(list(document_sections)))
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
all_files = glob.glob("*.txt") + glob.glob("*.htm") + glob.glob("*.md")
for file in all_files:
col1, col2 = st.sidebar.columns([4,1]) # adjust the ratio as needed
with col1:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col2:
if st.button("πŸ—‘", key=file):
os.remove(file)
st.experimental_rerun()
if __name__ == "__main__":
main()