File size: 10,639 Bytes
c8fbdd5
 
 
 
 
 
 
 
 
e3c8253
 
c8fbdd5
 
 
 
 
e3c8253
c8fbdd5
d94cec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff444d0
d94cec6
 
eeba7ab
d94cec6
 
eeba7ab
 
d94cec6
 
 
 
7e4e0eb
d94cec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b938a0
e3c8253
1b938a0
 
e3c8253
 
 
1b938a0
885834e
1b938a0
e3c8253
 
 
 
 
 
c8fbdd5
e3c8253
 
 
 
 
885834e
e3c8253
 
 
c8fbdd5
885834e
c8fbdd5
e3c8253
c8fbdd5
 
 
885834e
e3c8253
c8fbdd5
e3c8253
c8fbdd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c8253
885834e
d94cec6
 
 
885834e
d94cec6
 
 
885834e
 
 
 
 
 
 
 
 
 
 
 
 
7e4e0eb
 
754fa78
 
d94cec6
f308837
d94cec6
f308837
0c62812
 
f308837
 
 
ce77aca
754fa78
 
 
 
ce77aca
f308837
dc899fe
 
f308837
dc899fe
d94cec6
 
 
754fa78
 
 
 
dc899fe
 
754fa78
e60f1e5
754fa78
f308837
754fa78
 
 
 
 
885834e
d94cec6
885834e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
import requests

from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%I%M")  
    safe_prompt = "".join(x for x in prompt if x.isalnum())[:45]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def chat_with_model(prompt, document_section):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    response = openai.ChatCompletion.create(model=model, messages=conversation)
    #return response
    return response['choices'][0]['message']['content']
    
def transcribe_audio(openai_key, file_path, model):
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        
        response2 = chat_with_model(response.json().get('text'), '') # *************************************
        st.write('Responses:')
        #st.write(response)
        st.write(response2)
        return response.json().get('text')
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

def create_file(filename, prompt, response):
    if filename.endswith(".txt"):
        with open(filename, 'w') as file:
            file.write(f"{prompt}\n{response}")
    elif filename.endswith(".htm"):
        with open(filename, 'w') as file:
            file.write(f"{prompt}   {response}")
    elif filename.endswith(".md"):
        with open(filename, 'w') as file:
            file.write(f"{prompt}\n\n{response}")
            
def truncate_document(document, length):
    return document[:length]
def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        data = file.read()
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href

def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")
    
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""



def chat_with_file_contents(prompt, file_content):
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(file_content)>0:
        conversation.append({'role': 'assistant', 'content': file_content})
    response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
    return response['choices'][0]['message']['content']
        

# Sidebar and global
openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide")
menu = ["htm", "txt", "xlsx", "csv", "md", "py"]  #619
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))

# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
    transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
    st.write(transcription)
    gptOutput = chat_with_model(transcription, '') # *************************************
    filename = generate_filename(transcription, choice)
    create_file(filename, transcription, gptOutput)
    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)


def main():
    user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)

    collength, colupload = st.columns([2,3])  # adjust the ratio as needed
    with collength:
        #max_length = 12000 - optimal for gpt35 turbo. 2x=24000 for gpt4.  8x=96000 for gpt4-32k.
        max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
    with colupload:
        uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "xlsx","csv","html", "htm", "md", "txt"])
    
    document_sections = deque()
    document_responses = {}

    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))

    if len(document_sections) > 0:
        
        if st.button("πŸ‘οΈ View Upload"):
            st.markdown("**Sections of the uploaded file:**")
            for i, section in enumerate(list(document_sections)):
                st.markdown(f"**Section {i+1}**\n{section}")
        
        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Reasoning with your inputs...')
                    response = chat_with_model(user_prompt, section) # *************************************
                    st.write('Response:')
                    st.write(response)
                    document_responses[i] = response
                    filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                    create_file(filename, user_prompt, response)
                    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    if st.button('πŸ’¬ Chat'):
        st.write('Reasoning with your inputs...')
        response = chat_with_model(user_prompt, ''.join(list(document_sections))) # *************************************
        st.write('Response:')
        st.write(response)
        
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    all_files = glob.glob("*.*")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order

    # sidebar of files
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("🌐", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("πŸ“‚", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("πŸ”", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("πŸ—‘", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()
                
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
        if next_action=='md':
            st.markdown(file_contents)
        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            st.write('Reasoning with your inputs...')
            response = chat_with_file_contents(user_prompt, file_contents)
            st.write('Response:')
            st.write(response)
            filename = generate_filename(file_content_area, choice)
            create_file(filename, file_content_area, response)
            st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
                
if __name__ == "__main__":
    main()