import streamlit as st import openai import os import base64 import glob import json import mistune import pytz import math import requests from datetime import datetime from openai import ChatCompletion from xml.etree import ElementTree as ET from bs4 import BeautifulSoup from collections import deque from audio_recorder_streamlit import audio_recorder # Function Definitions (kept unchanged) # ... def chat_with_file_contents(prompt, file_content): conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.append({'role': 'user', 'content': prompt}) if len(file_content)>0: conversation.append({'role': 'assistant', 'content': file_content}) response = openai.ChatCompletion.create(model=model_choice, messages=conversation) return response['choices'][0]['message']['content'] # Sidebar and global openai.api_key = os.getenv('OPENAI_KEY') st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide") menu = ["htm", "txt", "xlsx", "csv", "md", "py"] #619 choice = st.sidebar.selectbox("Output File Type:", menu) model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) # Audio, transcribe, GPT: filename = save_and_play_audio(audio_recorder) if filename is not None: transcription = transcribe_audio(openai.api_key, filename, "whisper-1") st.write(transcription) gptOutput = chat_with_model(transcription, '') filename = generate_filename(transcription, choice) create_file(filename, transcription, gptOutput) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) def main(): user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) collength, colupload = st.columns([2,3]) # adjust the ratio as needed with collength: max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) with colupload: uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "xlsx","csv","html", "htm", "md", "txt"]) document_sections = deque() document_responses = {} if uploaded_file is not None: file_content = read_file_content(uploaded_file, max_length) document_sections.extend(divide_document(file_content, max_length)) if len(document_sections) > 0: if st.button("👁️ View Upload"): st.markdown("**Sections of the uploaded file:**") for i, section in enumerate(list(document_sections)): st.markdown(f"**Section {i+1}**\n{section}") st.markdown("**Chat with the model:**") for i, section in enumerate(list(document_sections)): if i in document_responses: st.markdown(f"**Section {i+1}**\n{document_responses[i]}") else: if st.button(f"Chat about Section {i+1}"): st.write('Reasoning with your inputs...') response = chat_with_model(user