Spaces:
Runtime error
Runtime error
File size: 4,521 Bytes
df192ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
import gradio as gr
import os
import csv
from gradio import inputs, outputs
from datetime import datetime
import fastapi
from typing import List, Dict
import httpx
import pandas as pd
import datasets as ds
UseMemory=True
HF_TOKEN=os.environ.get("HF_TOKEN")
def SaveResult(text, outputfileName):
basedir = os.path.dirname(__file__)
savePath = outputfileName
print("Saving: " + text + " to " + savePath)
from os.path import exists
file_exists = exists(savePath)
if file_exists:
with open(outputfileName, "a") as f: #append
f.write(str(text.replace("\n"," ")))
f.write('\n')
else:
with open(outputfileName, "w") as f: #write
f.write(str(text.replace("\n"," ")))
f.write('\n')
return
if UseMemory:
try:
# Retrieve File
except:
print("file not found")
def store_message(name: str, message: str, outputfileName: str):
basedir = os.path.dirname(__file__)
savePath = outputfileName
if name and message:
print("Saving: " + text + " to " + savePath)
with open(savePath, "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
writer.writerow(
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() }
)
df = pd.read_csv(savePath)
return df
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
def take_last_tokens(inputs, note_history, history):
if inputs['input_ids'].shape[1] > 128:
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
history = history[1:]
return inputs, note_history, history
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay.
note_history.append(note)
note_history = '</s> <s>'.join(note_history)
return [note_history]
title = "💬ChatBack🧠💾"
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions.
Current Best SOTA Chatbot: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F """
def chat(message, history):
history = history or []
if history:
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
else:
history_useful = []
history_useful = add_note_to_history(message, history_useful)
inputs = tokenizer(history_useful, return_tensors="pt")
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
reply_ids = model.generate(**inputs)
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
history_useful = add_note_to_history(response, history_useful)
list_history = history_useful[0].split('</s> <s>')
history.append((list_history[-2], list_history[-1]))
df=pd.DataFrame()
if UseMemory:
outputfileName = 'File.csv'
df = store_message(message, response, outputfileName) # Save to dataset
basedir = os.path.dirname(__file__)
savePath = outputfileName
return history, df, outputfileName
with gr.Blocks() as demo:
gr.Markdown("<h1><center>🍰Gradio chatbot backed by memory in a dataset repository.🎨</center></h1>")
#gr.Markdown("The memory dataset for saves is [{DATASET_REPO_URL}]({DATASET_REPO_URL}) And here: https://huggingface.co/spaces/awacke1/DatasetAnalyzer Code and datasets on chat are here hf tk: https://paperswithcode.com/datasets?q=chat&v=lst&o=newest")
with gr.Row():
t1 = gr.Textbox(lines=1, default="", label="Chat Text:")
b1 = gr.Button("Send Message")
with gr.Row(): # inputs and buttons
s1 = gr.State([])
s2 = gr.Markdown()
with gr.Row():
file = gr.File(label="File"),
df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate")
b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file])
demo.launch(debug=True, show_error=True) |