Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -38,24 +38,33 @@ import pydeck as pdk
|
|
38 |
|
39 |
def ShowCityDataframe(uscities, US):
|
40 |
df = pd.read_csv(uscities)
|
41 |
-
df1 = pd.read_csv(uscities)
|
42 |
-
df2 = pd.read_csv(uscities)
|
43 |
|
44 |
st.title("City FIPS, Location, and Population")
|
45 |
st.text("Search for any city in the United States:")
|
46 |
|
47 |
search_query = st.text_input(label="City Name", value="")
|
48 |
if search_query != "":
|
49 |
-
df =
|
50 |
st.subheader("City Detail")
|
51 |
st.write(df)
|
52 |
-
|
|
|
|
|
53 |
search_query2 = st.text_input(label="Zip Code", value="")
|
54 |
if search_query2 != "":
|
55 |
-
df =
|
56 |
st.subheader("Zip Code Area Detail")
|
57 |
st.write(df)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
uscities = "uscities.csv" # CSV - Columns are: "city","city_ascii","state_id","state_name","county_fips","county_name","lat","lng","population","density","source","military","incorporated","timezone","ranking","zips","id"
|
60 |
US = "US.txt" # TSV - Columns are: Country Zip City State Area AreaCode Latitude Longitude Include
|
61 |
# TSV Columns sample: US 99553 Akutan Alaska AK Aleutians East 013 54.143 -165.7854 1
|
|
|
38 |
|
39 |
def ShowCityDataframe(uscities, US):
|
40 |
df = pd.read_csv(uscities)
|
|
|
|
|
41 |
|
42 |
st.title("City FIPS, Location, and Population")
|
43 |
st.text("Search for any city in the United States:")
|
44 |
|
45 |
search_query = st.text_input(label="City Name", value="")
|
46 |
if search_query != "":
|
47 |
+
df = df[df["city"].str.contains(search_query, case=False)]
|
48 |
st.subheader("City Detail")
|
49 |
st.write(df)
|
50 |
+
|
51 |
+
df = pd.read_csv(uscities) # reload
|
52 |
+
|
53 |
search_query2 = st.text_input(label="Zip Code", value="")
|
54 |
if search_query2 != "":
|
55 |
+
df = df[df["zips"].str.contains(search_query2, case=False)]
|
56 |
st.subheader("Zip Code Area Detail")
|
57 |
st.write(df)
|
58 |
|
59 |
+
df = pd.read_csv(uscities) # reload
|
60 |
+
|
61 |
+
search_query3 = st.text_input(label="State", value="")
|
62 |
+
if search_query2 != "":
|
63 |
+
df = df[df["state_name"].str.contains(search_query3, case=False)]
|
64 |
+
st.subheader("State Detail")
|
65 |
+
st.write(df)
|
66 |
+
|
67 |
+
|
68 |
uscities = "uscities.csv" # CSV - Columns are: "city","city_ascii","state_id","state_name","county_fips","county_name","lat","lng","population","density","source","military","incorporated","timezone","ranking","zips","id"
|
69 |
US = "US.txt" # TSV - Columns are: Country Zip City State Area AreaCode Latitude Longitude Include
|
70 |
# TSV Columns sample: US 99553 Akutan Alaska AK Aleutians East 013 54.143 -165.7854 1
|