awacke1 commited on
Commit
c913f06
·
1 Parent(s): a465eae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +138 -0
app.py CHANGED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from cmath import pi
2
+ from json import load, tool
3
+ from os import stat
4
+ from telnetlib import RCP
5
+ import streamlit as st
6
+ import pandas as pd
7
+ import numpy as np
8
+ import pydeck as pdk
9
+ from typing import Dict, Union
10
+ import streamlit.components.v1 as components
11
+ #import streamlit_shared_funcs as my
12
+
13
+ st.title("Live 3D Map")
14
+ location = st.checkbox('Location Filter')
15
+ queried_zip_code = None
16
+ queried_city = None
17
+ queried_state = None
18
+ queried_age = None
19
+ if location:
20
+ queried_zip_code = st.text_input('Zip Code:')
21
+ queried_city = st.text_input('City')
22
+ queried_state = st.selectbox('State:', ('AL', 'AK', 'AZ', 'AR', 'AS','CA','CO','CT','DE','DC','FL','GA','GU','HI','ID','IL',
23
+ 'IN','IA','KS','KY','LA','ME','MD','MA','MI','MN','MS','MO','MT','NE','NV','NH','NJ','NM','NY','NC','ND','CM','OH',
24
+ 'OK','OR','PA','PR','RI','SC','SD','TN','TX','UT','VT','VA','VI','WA','WV','WI','WY'))
25
+ ageBox = st.checkbox("Age Filter")
26
+ if ageBox:
27
+ queried_age = st.slider("Age",0,200,(0,200))
28
+
29
+ queried_male = st.checkbox("Male",value=True)
30
+ queried_female = st.checkbox("Female",value=True)
31
+
32
+ @st.cache(allow_output_mutation=True)
33
+ def gen_load() -> pd.DataFrame:
34
+ df = my.get_data()
35
+ return df
36
+
37
+ @st.cache(allow_output_mutation=True)
38
+ def gen_load_old() -> pd.DataFrame:
39
+ # file = pd.read_csv('us-zip-code-latitude-and-longitude.txt',names = ['Zip','City','State','lat','lon','Timezone',"Daylight Savings", "Geo point"], skiprows=1, delimiter=";")
40
+ filename = "US.txt"
41
+ file = pd.read_csv(filename,names = ['Country','Zip','City','State','Abb','Name1','Code1','Name2','Code2','lat','lon','Accuracy'], delimiter="\t",usecols=["Zip","City","State","Abb","lat","lon"])
42
+ #file = pd.read_csv('US.txt',names = ['Country','Zip','City','State','Abb','Name1','Code1','Name2','Code2','lat','lon','Accuracy'], delimiter="\t",usecols=["Zip","City","State","Abb","lat","lon"])
43
+ file['Zip'] = file['Zip'].astype(str).str.zfill(5)
44
+ w = lambda x: (x[-5:])
45
+ filename = "NPIProviders.xlsx"
46
+ df = pd.read_excel('...xlsx',header = None,names = ['Zip','FCTIN','FCName', 'Procedures','Age','Gender','Admitted','Form','Cohort'], skiprows=1,converters={'Zip':w },usecols="A,B,C,D,E,F,G,H,I")
47
+ df = df.merge(file, left_on = 'Zip', right_on = 'Zip', how='inner')
48
+ df = df.fillna(" ")
49
+ return df
50
+
51
+ #queried_ctss = st.multiselect("Ctss",options=gen_load()["Ctss"].value_counts().reset_index())
52
+
53
+ @st.cache(allow_output_mutation=True)
54
+ def load_data(state = None,zip_code = None,city = None,age = None,male = None,female = None,selected_cohorts = None) -> pd.DataFrame:
55
+ df = gen_load()
56
+ try:
57
+ if (male or female) and not (male and female):
58
+ df = df.loc[df['Gender'] == ("Male" if male else ("Female" if female else ""))]
59
+ elif not (male or female):
60
+ df = df.loc[df['Gender'] == "(null)"]
61
+ except:
62
+ pass
63
+ try:
64
+ df = df[(df['Age'].gt(age[0]) & df['Age'].lt(age[1]))]
65
+ except:
66
+ pass
67
+ try:
68
+ if zip_code or state or city:
69
+ val = "Zip" if zip_code != "" else "City" if city != "" else "Abb"
70
+ df = df.loc[df[val] == (zip_code or city or state)]
71
+ except:
72
+ pass
73
+
74
+ try:
75
+ if len(selected_cohorts) > 0:
76
+ df = df.loc[df['Cohort'].isin(selected_ctss)]
77
+
78
+ except:
79
+ pass
80
+
81
+ value_counts = df["FCName"].value_counts()
82
+ df2 = pd.DataFrame(value_counts)
83
+ df2 = df2.reset_index()
84
+ df2.columns = ['FCName', 'Count']
85
+ df = df.merge(df2, left_on = 'FCName', right_on = 'FCName',how='left')
86
+
87
+ return df
88
+
89
+ def mapF(data):
90
+ geo = data.iloc[0]
91
+ lat = float(geo['lat'])
92
+ lon = float(geo['lon'])
93
+ max = data['Count'].max()
94
+ view_state = pdk.ViewState(
95
+ pitch = 40.5,
96
+ bearing = -27.36,
97
+ latitude = lat,
98
+ longitude = lon,
99
+ zoom = 4,
100
+ )
101
+
102
+ layer = pdk.Layer(
103
+ 'ColumnLayer',
104
+ data=data,
105
+ get_position='[lon, lat]',
106
+ pickable=True,
107
+ extruded=True,
108
+ auto_highlight=True,
109
+ get_elevation="Count",
110
+ # cell_size=200,
111
+ radius = 1000,
112
+ elevation_scale=1000000/ max,
113
+ get_fill_color='[255, 255 - (Count/3500) * 255, 0,100]',
114
+ coverage=10
115
+ )
116
+
117
+ r = pdk.Deck(
118
+ # map_style = x,
119
+ layers=[layer],
120
+ initial_view_state= view_state,
121
+ tooltip = {
122
+ "html": "<b>City,State:</b> {City} </br> <b>Procedures:</b> {Count} </br> <b>F:</b> {FCName}",
123
+ "style": {
124
+ "backgroundColor": "steelblue",
125
+ "color": "white"
126
+ }
127
+ },
128
+ )
129
+ # st.pydeck_chart(r)
130
+ components.html(r.to_html(as_string=True), height=600)
131
+
132
+ data = load_data(state=queried_state,zip_code=queried_zip_code,city=queried_city,age=queried_age,male=queried_male,female=queried_female,selected_cohorts=queried_cohorts)
133
+
134
+ if st.checkbox('Display data ?'):
135
+ data
136
+
137
+ mapFs(data)
138
+