File size: 3,130 Bytes
6038be0 2cba708 56681c6 2cba708 56681c6 2cba708 56681c6 2cba708 56681c6 2cba708 0f45e38 2cba708 56681c6 2cba708 56681c6 a3ac2d8 56681c6 23a5b76 56681c6 092c220 23a5b76 182e542 56681c6 2cba708 4fbaa37 2cba708 4fbaa37 2cba708 56681c6 2cba708 376b6d4 56681c6 182e542 56b843a 2cba708 aa81381 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import streamlit as st
import json
import os
import requests
from bardapi import Bard
# Load the GOOGLE_LANGUAGES_TO_CODES dictionary from lang.json
with open("lang.json", "r") as file:
GOOGLE_LANGUAGES_TO_CODES = json.load(file)
# Set up the session for Bard API
session = requests.Session()
session.headers = {
"Host": "bard.google.com",
"X-Same-Domain": "1",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36",
"Content-Type": "application/x-www-form-urlencoded;charset=UTF-8",
"Origin": "https://bard.google.com",
"Referer": "https://bard.google.com/",
}
session.cookies.set("__Secure-1PSID", os.getenv("_BARD_API_KEY"))
with st.sidebar:
# Add a selector in the sidebar using the dictionary's keys
selected_language_name = st.sidebar.selectbox("Select Language", list(GOOGLE_LANGUAGES_TO_CODES.keys()))
code_interpreter = st.sidebar.checkbox("Code Interpreter", value=True)
# Retrieve the corresponding language code from the dictionary
selected_language_code = GOOGLE_LANGUAGES_TO_CODES[selected_language_name]
# Initialize Bard with the selected language code
bard = Bard(token=os.getenv("_BARD_API_KEY"), language=selected_language_code, session=session, timeout=30)
TITLE = "Palm 2π΄ Chatbot"
DESCRIPTION = """
"""
# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)
# Prediction function
def predict(message):
with st.status("Requesting Palm-2π΄..."):
st.write("Requesting API...")
response = bard.get_answer(message if not code_interpreter else message + "Rule 1: If User requires a code snippet, write each only one code snippet and only in that way that it would run in streamlit app, and but don't output anything if it requires some additional libraries.")
st.write("Done...")
st.write("Checking images...")
for i in response['images']:
st.image(i)
return response
# Display chat messages from history on app rerun
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=("π§βπ»" if message["role"] == 'human' else 'π΄')):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("Ask Palm 2 anything..."):
st.chat_message("human", avatar="π§βπ»").markdown(prompt)
# st.session_state.messages.append({"role": "human", "content": prompt})
response = predict(prompt)
with st.chat_message("assistant", avatar='π΄'):
st.markdown(response['content'])
if response['code']:
url = bard.export_replit(
code=response['code'],
program_lang=response['program_lang'],
)['url']
st.title('Export to repl.it')
st.text(url)
if code_interpreter:
try:
exec(response['code'])
except Exception as e:
st.write(f"ERROR {e}...")
# st.session_state.messages.append({"role": "assistant", "content": response['content']})
|