Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -37,39 +37,153 @@ if 'tts_voice' not in st.session_state:
|
|
| 37 |
if 'arxiv_last_query' not in st.session_state:
|
| 38 |
st.session_state['arxiv_last_query'] = ""
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
class VideoSearch:
|
| 41 |
def __init__(self):
|
| 42 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
| 43 |
self.load_dataset()
|
| 44 |
|
| 45 |
def fetch_dataset_rows(self):
|
| 46 |
-
"""Fetch dataset
|
| 47 |
try:
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
continue
|
| 63 |
-
processed_rows.append(row)
|
| 64 |
-
|
| 65 |
-
df = pd.DataFrame(processed_rows)
|
| 66 |
-
st.session_state['search_columns'] = [col for col in df.columns
|
| 67 |
-
if col not in ['video_embed', 'description_embed', 'audio_embed']]
|
| 68 |
-
return df
|
| 69 |
return self.load_example_data()
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
return self.load_example_data()
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def prepare_features(self):
|
| 74 |
"""Prepare embeddings with adaptive field detection"""
|
| 75 |
try:
|
|
@@ -110,22 +224,6 @@ class VideoSearch:
|
|
| 110 |
num_rows = len(self.dataset)
|
| 111 |
self.video_embeds = np.random.randn(num_rows, 384)
|
| 112 |
self.text_embeds = np.random.randn(num_rows, 384)
|
| 113 |
-
|
| 114 |
-
def load_example_data(self):
|
| 115 |
-
"""Load example data as fallback"""
|
| 116 |
-
example_data = [
|
| 117 |
-
{
|
| 118 |
-
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
|
| 119 |
-
"youtube_id": "IO-vwtyicn4",
|
| 120 |
-
"description": "This video shows a close-up of an ancient text carved into a surface.",
|
| 121 |
-
"views": 45489,
|
| 122 |
-
"start_time": 1452,
|
| 123 |
-
"end_time": 1458,
|
| 124 |
-
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
|
| 125 |
-
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
|
| 126 |
-
}
|
| 127 |
-
]
|
| 128 |
-
return pd.DataFrame(example_data)
|
| 129 |
|
| 130 |
def load_dataset(self):
|
| 131 |
self.dataset = self.fetch_dataset_rows()
|
|
@@ -174,9 +272,7 @@ async def generate_speech(text, voice=None):
|
|
| 174 |
return None
|
| 175 |
|
| 176 |
def transcribe_audio(audio_path):
|
| 177 |
-
"""Placeholder for ASR transcription
|
| 178 |
-
Integrate your own ASR model or API here."""
|
| 179 |
-
# For now, just return a message:
|
| 180 |
return "ASR not implemented. Integrate a local model or another service here."
|
| 181 |
|
| 182 |
def show_file_manager():
|
|
@@ -215,12 +311,10 @@ def show_file_manager():
|
|
| 215 |
def arxiv_search(query, max_results=5):
|
| 216 |
"""Perform a simple Arxiv search using their API and return top results."""
|
| 217 |
base_url = "http://export.arxiv.org/api/query?"
|
| 218 |
-
# Encode the query
|
| 219 |
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
|
| 220 |
r = requests.get(search_url)
|
| 221 |
if r.status_code == 200:
|
| 222 |
root = ET.fromstring(r.text)
|
| 223 |
-
# Namespace handling
|
| 224 |
ns = {'atom': 'http://www.w3.org/2005/Atom'}
|
| 225 |
entries = root.findall('atom:entry', ns)
|
| 226 |
results = []
|
|
@@ -248,7 +342,6 @@ def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=
|
|
| 248 |
if link:
|
| 249 |
st.markdown(f"[View Paper]({link})")
|
| 250 |
|
| 251 |
-
# TTS Options
|
| 252 |
if vocal_summary:
|
| 253 |
spoken_text = f"Here are some Arxiv results for {q}. "
|
| 254 |
if titles_summary:
|
|
@@ -278,7 +371,7 @@ def main():
|
|
| 278 |
search = VideoSearch()
|
| 279 |
|
| 280 |
# Create tabs
|
| 281 |
-
tab1, tab2, tab3, tab4 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files"])
|
| 282 |
|
| 283 |
# ---- Tab 1: Video Search ----
|
| 284 |
with tab1:
|
|
@@ -332,7 +425,6 @@ def main():
|
|
| 332 |
# ---- Tab 2: Voice Input ----
|
| 333 |
with tab2:
|
| 334 |
st.subheader("Voice Input")
|
| 335 |
-
|
| 336 |
st.write("ποΈ Record your voice:")
|
| 337 |
audio_bytes = audio_recorder()
|
| 338 |
if audio_bytes:
|
|
@@ -373,6 +465,86 @@ def main():
|
|
| 373 |
with tab4:
|
| 374 |
show_file_manager()
|
| 375 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
# Sidebar
|
| 377 |
with st.sidebar:
|
| 378 |
st.subheader("βοΈ Settings & History")
|
|
@@ -392,4 +564,4 @@ def main():
|
|
| 392 |
key="tts_voice")
|
| 393 |
|
| 394 |
if __name__ == "__main__":
|
| 395 |
-
main()
|
|
|
|
| 37 |
if 'arxiv_last_query' not in st.session_state:
|
| 38 |
st.session_state['arxiv_last_query'] = ""
|
| 39 |
|
| 40 |
+
def fetch_dataset_info(dataset_id):
|
| 41 |
+
"""Fetch dataset information including all available configs and splits"""
|
| 42 |
+
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
| 43 |
+
try:
|
| 44 |
+
response = requests.get(info_url, timeout=30)
|
| 45 |
+
if response.status_code == 200:
|
| 46 |
+
return response.json()
|
| 47 |
+
except Exception as e:
|
| 48 |
+
st.warning(f"Error fetching dataset info: {e}")
|
| 49 |
+
return None
|
| 50 |
+
|
| 51 |
+
def fetch_dataset_rows(dataset_id, config="default", split="train", max_rows=100):
|
| 52 |
+
"""Fetch rows from a specific config and split of a dataset"""
|
| 53 |
+
url = f"https://datasets-server.huggingface.co/first-rows?dataset={dataset_id}&config={config}&split={split}"
|
| 54 |
+
try:
|
| 55 |
+
response = requests.get(url, timeout=30)
|
| 56 |
+
if response.status_code == 200:
|
| 57 |
+
data = response.json()
|
| 58 |
+
if 'rows' in data:
|
| 59 |
+
processed_rows = []
|
| 60 |
+
for row_data in data['rows']:
|
| 61 |
+
row = row_data.get('row', row_data)
|
| 62 |
+
# Process embeddings if present
|
| 63 |
+
for key in row:
|
| 64 |
+
if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
|
| 65 |
+
if isinstance(row[key], str):
|
| 66 |
+
try:
|
| 67 |
+
row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
|
| 68 |
+
except:
|
| 69 |
+
continue
|
| 70 |
+
row['_config'] = config
|
| 71 |
+
row['_split'] = split
|
| 72 |
+
processed_rows.append(row)
|
| 73 |
+
return processed_rows
|
| 74 |
+
except Exception as e:
|
| 75 |
+
st.warning(f"Error fetching rows for {config}/{split}: {e}")
|
| 76 |
+
return []
|
| 77 |
+
|
| 78 |
+
def search_dataset(dataset_id, search_text, include_configs=None, include_splits=None):
|
| 79 |
+
"""
|
| 80 |
+
Search across all configurations and splits of a dataset
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
dataset_id (str): The Hugging Face dataset ID
|
| 84 |
+
search_text (str): Text to search for in descriptions and queries
|
| 85 |
+
include_configs (list): List of specific configs to search, or None for all
|
| 86 |
+
include_splits (list): List of specific splits to search, or None for all
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
tuple: (DataFrame of results, list of available configs, list of available splits)
|
| 90 |
+
"""
|
| 91 |
+
# Get dataset info
|
| 92 |
+
dataset_info = fetch_dataset_info(dataset_id)
|
| 93 |
+
if not dataset_info:
|
| 94 |
+
return pd.DataFrame(), [], []
|
| 95 |
+
|
| 96 |
+
# Get available configs and splits
|
| 97 |
+
configs = include_configs if include_configs else dataset_info.get('config_names', ['default'])
|
| 98 |
+
all_rows = []
|
| 99 |
+
available_splits = set()
|
| 100 |
+
|
| 101 |
+
# Search across configs and splits
|
| 102 |
+
for config in configs:
|
| 103 |
+
try:
|
| 104 |
+
# First fetch split info for this config
|
| 105 |
+
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
|
| 106 |
+
splits_response = requests.get(splits_url, timeout=30)
|
| 107 |
+
if splits_response.status_code == 200:
|
| 108 |
+
splits_data = splits_response.json()
|
| 109 |
+
splits = [split['split'] for split in splits_data.get('splits', [])]
|
| 110 |
+
if not splits:
|
| 111 |
+
splits = ['train'] # fallback to train if no splits found
|
| 112 |
+
|
| 113 |
+
# Filter splits if specified
|
| 114 |
+
if include_splits:
|
| 115 |
+
splits = [s for s in splits if s in include_splits]
|
| 116 |
+
|
| 117 |
+
available_splits.update(splits)
|
| 118 |
+
|
| 119 |
+
# Fetch and search rows for each split
|
| 120 |
+
for split in splits:
|
| 121 |
+
rows = fetch_dataset_rows(dataset_id, config, split)
|
| 122 |
+
for row in rows:
|
| 123 |
+
# Search in all text fields
|
| 124 |
+
text_content = ' '.join(str(v) for v in row.values() if isinstance(v, (str, int, float)))
|
| 125 |
+
if search_text.lower() in text_content.lower():
|
| 126 |
+
row['_matched_text'] = text_content
|
| 127 |
+
row['_relevance_score'] = text_content.lower().count(search_text.lower())
|
| 128 |
+
all_rows.append(row)
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
st.warning(f"Error processing config {config}: {e}")
|
| 132 |
+
continue
|
| 133 |
+
|
| 134 |
+
# Convert to DataFrame and sort by relevance
|
| 135 |
+
if all_rows:
|
| 136 |
+
df = pd.DataFrame(all_rows)
|
| 137 |
+
df = df.sort_values('_relevance_score', ascending=False)
|
| 138 |
+
return df, configs, list(available_splits)
|
| 139 |
+
|
| 140 |
+
return pd.DataFrame(), configs, list(available_splits)
|
| 141 |
+
|
| 142 |
class VideoSearch:
|
| 143 |
def __init__(self):
|
| 144 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 145 |
+
self.dataset_id = "omegalabsinc/omega-multimodal"
|
| 146 |
self.load_dataset()
|
| 147 |
|
| 148 |
def fetch_dataset_rows(self):
|
| 149 |
+
"""Fetch dataset with enhanced search capabilities"""
|
| 150 |
try:
|
| 151 |
+
# First try to get all available data
|
| 152 |
+
df, configs, splits = search_dataset(
|
| 153 |
+
self.dataset_id,
|
| 154 |
+
"", # empty search text to get all data
|
| 155 |
+
include_configs=None, # all configs
|
| 156 |
+
include_splits=None # all splits
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
if not df.empty:
|
| 160 |
+
st.session_state['search_columns'] = [col for col in df.columns
|
| 161 |
+
if col not in ['video_embed', 'description_embed', 'audio_embed']
|
| 162 |
+
and not col.startswith('_')]
|
| 163 |
+
return df
|
| 164 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
return self.load_example_data()
|
| 166 |
+
|
| 167 |
+
except Exception as e:
|
| 168 |
+
st.warning(f"Error loading dataset: {e}")
|
| 169 |
return self.load_example_data()
|
| 170 |
|
| 171 |
+
def load_example_data(self):
|
| 172 |
+
"""Load example data as fallback"""
|
| 173 |
+
example_data = [
|
| 174 |
+
{
|
| 175 |
+
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
|
| 176 |
+
"youtube_id": "IO-vwtyicn4",
|
| 177 |
+
"description": "This video shows a close-up of an ancient text carved into a surface.",
|
| 178 |
+
"views": 45489,
|
| 179 |
+
"start_time": 1452,
|
| 180 |
+
"end_time": 1458,
|
| 181 |
+
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
|
| 182 |
+
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
|
| 183 |
+
}
|
| 184 |
+
]
|
| 185 |
+
return pd.DataFrame(example_data)
|
| 186 |
+
|
| 187 |
def prepare_features(self):
|
| 188 |
"""Prepare embeddings with adaptive field detection"""
|
| 189 |
try:
|
|
|
|
| 224 |
num_rows = len(self.dataset)
|
| 225 |
self.video_embeds = np.random.randn(num_rows, 384)
|
| 226 |
self.text_embeds = np.random.randn(num_rows, 384)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
def load_dataset(self):
|
| 229 |
self.dataset = self.fetch_dataset_rows()
|
|
|
|
| 272 |
return None
|
| 273 |
|
| 274 |
def transcribe_audio(audio_path):
|
| 275 |
+
"""Placeholder for ASR transcription"""
|
|
|
|
|
|
|
| 276 |
return "ASR not implemented. Integrate a local model or another service here."
|
| 277 |
|
| 278 |
def show_file_manager():
|
|
|
|
| 311 |
def arxiv_search(query, max_results=5):
|
| 312 |
"""Perform a simple Arxiv search using their API and return top results."""
|
| 313 |
base_url = "http://export.arxiv.org/api/query?"
|
|
|
|
| 314 |
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
|
| 315 |
r = requests.get(search_url)
|
| 316 |
if r.status_code == 200:
|
| 317 |
root = ET.fromstring(r.text)
|
|
|
|
| 318 |
ns = {'atom': 'http://www.w3.org/2005/Atom'}
|
| 319 |
entries = root.findall('atom:entry', ns)
|
| 320 |
results = []
|
|
|
|
| 342 |
if link:
|
| 343 |
st.markdown(f"[View Paper]({link})")
|
| 344 |
|
|
|
|
| 345 |
if vocal_summary:
|
| 346 |
spoken_text = f"Here are some Arxiv results for {q}. "
|
| 347 |
if titles_summary:
|
|
|
|
| 371 |
search = VideoSearch()
|
| 372 |
|
| 373 |
# Create tabs
|
| 374 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files", "π Advanced Search"])
|
| 375 |
|
| 376 |
# ---- Tab 1: Video Search ----
|
| 377 |
with tab1:
|
|
|
|
| 425 |
# ---- Tab 2: Voice Input ----
|
| 426 |
with tab2:
|
| 427 |
st.subheader("Voice Input")
|
|
|
|
| 428 |
st.write("ποΈ Record your voice:")
|
| 429 |
audio_bytes = audio_recorder()
|
| 430 |
if audio_bytes:
|
|
|
|
| 465 |
with tab4:
|
| 466 |
show_file_manager()
|
| 467 |
|
| 468 |
+
# ---- Tab 5: Advanced Dataset Search ----
|
| 469 |
+
with tab5:
|
| 470 |
+
st.subheader("Advanced Dataset Search")
|
| 471 |
+
|
| 472 |
+
# Dataset input
|
| 473 |
+
dataset_id = st.text_input("Dataset ID:", value="omegalabsinc/omega-multimodal")
|
| 474 |
+
|
| 475 |
+
# Search configuration
|
| 476 |
+
col1, col2 = st.columns([2, 1])
|
| 477 |
+
with col1:
|
| 478 |
+
search_text = st.text_input("Search text:",
|
| 479 |
+
placeholder="Enter text to search across all fields")
|
| 480 |
+
|
| 481 |
+
# Get available configs and splits
|
| 482 |
+
if dataset_id:
|
| 483 |
+
dataset_info = fetch_dataset_info(dataset_id)
|
| 484 |
+
if dataset_info:
|
| 485 |
+
configs = dataset_info.get('config_names', ['default'])
|
| 486 |
+
with col2:
|
| 487 |
+
selected_configs = st.multiselect(
|
| 488 |
+
"Configurations:",
|
| 489 |
+
options=configs,
|
| 490 |
+
default=['default'] if 'default' in configs else None
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
# Fetch available splits
|
| 494 |
+
if selected_configs:
|
| 495 |
+
all_splits = set()
|
| 496 |
+
for config in selected_configs:
|
| 497 |
+
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
|
| 498 |
+
try:
|
| 499 |
+
response = requests.get(splits_url, timeout=30)
|
| 500 |
+
if response.status_code == 200:
|
| 501 |
+
splits_data = response.json()
|
| 502 |
+
splits = [split['split'] for split in splits_data.get('splits', [])]
|
| 503 |
+
all_splits.update(splits)
|
| 504 |
+
except Exception as e:
|
| 505 |
+
st.warning(f"Error fetching splits for {config}: {e}")
|
| 506 |
+
|
| 507 |
+
selected_splits = st.multiselect(
|
| 508 |
+
"Splits:",
|
| 509 |
+
options=list(all_splits),
|
| 510 |
+
default=['train'] if 'train' in all_splits else None
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
if st.button("π Search Dataset"):
|
| 514 |
+
with st.spinner("Searching dataset..."):
|
| 515 |
+
results_df, _, _ = search_dataset(
|
| 516 |
+
dataset_id,
|
| 517 |
+
search_text,
|
| 518 |
+
include_configs=selected_configs,
|
| 519 |
+
include_splits=selected_splits
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
if not results_df.empty:
|
| 523 |
+
st.write(f"Found {len(results_df)} results")
|
| 524 |
+
|
| 525 |
+
# Display results in expandable sections
|
| 526 |
+
for idx, row in results_df.iterrows():
|
| 527 |
+
with st.expander(
|
| 528 |
+
f"Result {idx+1} (Config: {row['_config']}, Split: {row['_split']}, Score: {row['_relevance_score']})"
|
| 529 |
+
):
|
| 530 |
+
# Display all fields except internal ones
|
| 531 |
+
for col in row.index:
|
| 532 |
+
if not col.startswith('_') and not any(
|
| 533 |
+
term in col.lower()
|
| 534 |
+
for term in ['embed', 'vector', 'encoding']
|
| 535 |
+
):
|
| 536 |
+
st.write(f"**{col}:** {row[col]}")
|
| 537 |
+
|
| 538 |
+
# Add buttons for audio/video if available
|
| 539 |
+
if 'youtube_id' in row:
|
| 540 |
+
st.video(
|
| 541 |
+
f"https://youtube.com/watch?v={row['youtube_id']}&t={row.get('start_time', 0)}"
|
| 542 |
+
)
|
| 543 |
+
else:
|
| 544 |
+
st.warning("No results found.")
|
| 545 |
+
else:
|
| 546 |
+
st.error("Unable to fetch dataset information.")
|
| 547 |
+
|
| 548 |
# Sidebar
|
| 549 |
with st.sidebar:
|
| 550 |
st.subheader("βοΈ Settings & History")
|
|
|
|
| 564 |
key="tts_voice")
|
| 565 |
|
| 566 |
if __name__ == "__main__":
|
| 567 |
+
main()
|