Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,18 +6,26 @@ from sklearn.metrics.pairwise import cosine_similarity
|
|
| 6 |
import torch
|
| 7 |
import json
|
| 8 |
import os
|
|
|
|
| 9 |
from pathlib import Path
|
| 10 |
from datetime import datetime
|
| 11 |
import edge_tts
|
| 12 |
import asyncio
|
| 13 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import streamlit.components.v1 as components
|
| 15 |
|
| 16 |
# Page configuration
|
| 17 |
st.set_page_config(
|
| 18 |
-
page_title="Video Search
|
| 19 |
page_icon="π₯",
|
| 20 |
-
layout="wide"
|
|
|
|
| 21 |
)
|
| 22 |
|
| 23 |
# Initialize session state
|
|
@@ -25,8 +33,21 @@ if 'search_history' not in st.session_state:
|
|
| 25 |
st.session_state['search_history'] = []
|
| 26 |
if 'last_voice_input' not in st.session_state:
|
| 27 |
st.session_state['last_voice_input'] = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
speech_component = components.declare_component("speech_recognition", path="mycomponent")
|
| 31 |
|
| 32 |
class VideoSearch:
|
|
@@ -35,59 +56,87 @@ class VideoSearch:
|
|
| 35 |
self.load_dataset()
|
| 36 |
|
| 37 |
def fetch_dataset_rows(self):
|
| 38 |
-
"""Fetch dataset from Hugging Face API"""
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
else:
|
| 51 |
-
st.error(f"Error fetching dataset: {response.status_code}")
|
| 52 |
-
return None
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
return None
|
| 67 |
-
|
| 68 |
def load_dataset(self):
|
| 69 |
-
"""Load the Omega Multimodal dataset"""
|
| 70 |
try:
|
| 71 |
-
# Fetch dataset from Hugging Face API
|
| 72 |
self.dataset = self.fetch_dataset_rows()
|
| 73 |
-
|
| 74 |
if self.dataset is not None:
|
| 75 |
-
# Get dataset splits info
|
| 76 |
-
splits_info = self.get_dataset_splits()
|
| 77 |
-
if splits_info:
|
| 78 |
-
st.sidebar.write("Available splits:", splits_info)
|
| 79 |
-
|
| 80 |
self.prepare_features()
|
| 81 |
else:
|
| 82 |
self.create_dummy_data()
|
| 83 |
-
|
| 84 |
except Exception as e:
|
| 85 |
st.error(f"Error loading dataset: {e}")
|
| 86 |
self.create_dummy_data()
|
| 87 |
|
| 88 |
def prepare_features(self):
|
| 89 |
-
"""Prepare and cache embeddings"""
|
| 90 |
-
# Convert string representations of embeddings back to numpy arrays
|
| 91 |
try:
|
| 92 |
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
| 93 |
for e in self.dataset.video_embed])
|
|
@@ -95,38 +144,17 @@ class VideoSearch:
|
|
| 95 |
for e in self.dataset.description_embed])
|
| 96 |
except Exception as e:
|
| 97 |
st.error(f"Error preparing features: {e}")
|
| 98 |
-
# Create random embeddings as fallback
|
| 99 |
num_rows = len(self.dataset)
|
| 100 |
self.video_embeds = np.random.randn(num_rows, 384)
|
| 101 |
self.text_embeds = np.random.randn(num_rows, 384)
|
| 102 |
|
| 103 |
-
def create_dummy_data(self):
|
| 104 |
-
"""Create dummy data for testing"""
|
| 105 |
-
self.dataset = pd.DataFrame({
|
| 106 |
-
'video_id': [f'video_{i}' for i in range(10)],
|
| 107 |
-
'youtube_id': ['dQw4w9WgXcQ'] * 10,
|
| 108 |
-
'description': ['Sample video description'] * 10,
|
| 109 |
-
'views': [1000] * 10,
|
| 110 |
-
'start_time': [0] * 10,
|
| 111 |
-
'end_time': [60] * 10
|
| 112 |
-
})
|
| 113 |
-
# Create dummy embeddings
|
| 114 |
-
self.video_embeds = np.random.randn(10, 384) # Match model dimensions
|
| 115 |
-
self.text_embeds = np.random.randn(10, 384)
|
| 116 |
-
|
| 117 |
-
|
| 118 |
def search(self, query, top_k=5):
|
| 119 |
-
"""Search videos using query"""
|
| 120 |
query_embedding = self.text_model.encode([query])[0]
|
| 121 |
|
| 122 |
-
# Compute similarities
|
| 123 |
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
|
| 124 |
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
|
| 125 |
|
| 126 |
-
# Combine similarities
|
| 127 |
combined_sims = 0.5 * video_sims + 0.5 * text_sims
|
| 128 |
-
|
| 129 |
-
# Get top results
|
| 130 |
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
|
| 131 |
|
| 132 |
results = []
|
|
@@ -140,30 +168,76 @@ class VideoSearch:
|
|
| 140 |
'relevance_score': float(combined_sims[idx]),
|
| 141 |
'views': self.dataset.iloc[idx]['views']
|
| 142 |
})
|
| 143 |
-
|
| 144 |
return results
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
async def generate_speech(text, voice="en-US-AriaNeural"):
|
| 147 |
"""Generate speech using Edge TTS"""
|
| 148 |
if not text.strip():
|
| 149 |
return None
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
def main():
|
| 157 |
-
st.title("π₯ Video Search
|
| 158 |
|
| 159 |
-
# Initialize
|
| 160 |
search = VideoSearch()
|
| 161 |
|
| 162 |
-
# Create tabs
|
| 163 |
-
tab1, tab2, tab3 = st.tabs(["π Search", "ποΈ Voice
|
| 164 |
|
| 165 |
with tab1:
|
| 166 |
-
st.subheader("Search
|
| 167 |
|
| 168 |
# Text search
|
| 169 |
query = st.text_input("Enter your search query:")
|
|
@@ -203,74 +277,64 @@ def main():
|
|
| 203 |
audio_file = asyncio.run(generate_speech(summary))
|
| 204 |
if audio_file:
|
| 205 |
st.audio(audio_file)
|
| 206 |
-
|
| 207 |
-
if os.path.exists(audio_file):
|
| 208 |
-
os.remove(audio_file)
|
| 209 |
|
| 210 |
with tab2:
|
| 211 |
-
st.subheader("Voice Input")
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
st.session_state['last_voice_input'] = voice_input
|
| 218 |
-
st.markdown("**Transcribed Text:**")
|
| 219 |
-
st.write(voice_input)
|
| 220 |
|
| 221 |
-
if st.
|
| 222 |
-
|
| 223 |
-
st.
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
with tab3:
|
| 235 |
-
st.subheader("
|
|
|
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
st.
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
st.markdown(f"**Original Query:** {entry['query']}")
|
| 244 |
-
st.markdown(f"**Time:** {entry['timestamp']}")
|
| 245 |
-
|
| 246 |
-
for j, result in enumerate(entry['results'], 1):
|
| 247 |
-
st.markdown(f"**Result {j}:**")
|
| 248 |
-
st.write(result['description'])
|
| 249 |
-
if result['youtube_id']:
|
| 250 |
-
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
| 251 |
|
| 252 |
-
# Sidebar
|
| 253 |
with st.sidebar:
|
| 254 |
-
st.subheader("βοΈ
|
| 255 |
-
st.markdown("**Video Search Settings**")
|
| 256 |
-
st.slider("Default Results:", 1, 10, 5, key="default_results")
|
| 257 |
|
| 258 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
st.selectbox("TTS Voice:",
|
| 260 |
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
|
| 261 |
key="tts_voice")
|
| 262 |
-
|
| 263 |
-
st.markdown("**Model Settings**")
|
| 264 |
-
st.selectbox("Text Embedding Model:",
|
| 265 |
-
["all-MiniLM-L6-v2", "paraphrase-multilingual-MiniLM-L12-v2"],
|
| 266 |
-
key="embedding_model")
|
| 267 |
-
|
| 268 |
-
if st.button("π₯ Download Search History"):
|
| 269 |
-
# Convert history to JSON
|
| 270 |
-
history_json = json.dumps(st.session_state['search_history'], indent=2)
|
| 271 |
-
b64 = base64.b64encode(history_json.encode()).decode()
|
| 272 |
-
href = f'<a href="data:file/json;base64,{b64}" download="search_history.json">Download JSON</a>'
|
| 273 |
-
st.markdown(href, unsafe_allow_html=True)
|
| 274 |
|
| 275 |
if __name__ == "__main__":
|
| 276 |
main()
|
|
|
|
| 6 |
import torch
|
| 7 |
import json
|
| 8 |
import os
|
| 9 |
+
import glob
|
| 10 |
from pathlib import Path
|
| 11 |
from datetime import datetime
|
| 12 |
import edge_tts
|
| 13 |
import asyncio
|
| 14 |
import base64
|
| 15 |
+
import requests
|
| 16 |
+
import plotly.graph_objects as go
|
| 17 |
+
from gradio_client import Client
|
| 18 |
+
from collections import defaultdict
|
| 19 |
+
from bs4 import BeautifulSoup
|
| 20 |
+
from audio_recorder_streamlit import audio_recorder
|
| 21 |
import streamlit.components.v1 as components
|
| 22 |
|
| 23 |
# Page configuration
|
| 24 |
st.set_page_config(
|
| 25 |
+
page_title="Video Search & Research Assistant",
|
| 26 |
page_icon="π₯",
|
| 27 |
+
layout="wide",
|
| 28 |
+
initial_sidebar_state="auto",
|
| 29 |
)
|
| 30 |
|
| 31 |
# Initialize session state
|
|
|
|
| 33 |
st.session_state['search_history'] = []
|
| 34 |
if 'last_voice_input' not in st.session_state:
|
| 35 |
st.session_state['last_voice_input'] = ""
|
| 36 |
+
if 'transcript_history' not in st.session_state:
|
| 37 |
+
st.session_state['transcript_history'] = []
|
| 38 |
+
if 'should_rerun' not in st.session_state:
|
| 39 |
+
st.session_state['should_rerun'] = False
|
| 40 |
|
| 41 |
+
# Custom styling
|
| 42 |
+
st.markdown("""
|
| 43 |
+
<style>
|
| 44 |
+
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
|
| 45 |
+
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
|
| 46 |
+
.stButton>button { margin-right: 0.5rem; }
|
| 47 |
+
</style>
|
| 48 |
+
""", unsafe_allow_html=True)
|
| 49 |
+
|
| 50 |
+
# Initialize components
|
| 51 |
speech_component = components.declare_component("speech_recognition", path="mycomponent")
|
| 52 |
|
| 53 |
class VideoSearch:
|
|
|
|
| 56 |
self.load_dataset()
|
| 57 |
|
| 58 |
def fetch_dataset_rows(self):
|
| 59 |
+
"""Fetch dataset from Hugging Face API with debug and caching"""
|
| 60 |
+
try:
|
| 61 |
+
# First try to load from local cache
|
| 62 |
+
cache_file = "dataset_cache.json"
|
| 63 |
+
if os.path.exists(cache_file):
|
| 64 |
+
st.info("Loading from cache...")
|
| 65 |
+
with open(cache_file, 'r', encoding='utf-8') as f:
|
| 66 |
+
data = json.load(f)
|
| 67 |
+
return pd.DataFrame(data)
|
| 68 |
+
|
| 69 |
+
st.info("Fetching from Hugging Face API...")
|
| 70 |
+
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
# Add debug output
|
| 73 |
+
st.write(f"Requesting URL: {url}")
|
| 74 |
+
|
| 75 |
+
response = requests.get(url, timeout=30)
|
| 76 |
+
st.write(f"Response status: {response.status_code}")
|
| 77 |
+
|
| 78 |
+
if response.status_code == 200:
|
| 79 |
+
data = response.json()
|
| 80 |
+
|
| 81 |
+
# Debug output
|
| 82 |
+
st.write("Response structure:", list(data.keys()))
|
| 83 |
+
|
| 84 |
+
if 'rows' in data:
|
| 85 |
+
rows = data['rows']
|
| 86 |
+
|
| 87 |
+
# Cache the response
|
| 88 |
+
with open(cache_file, 'w', encoding='utf-8') as f:
|
| 89 |
+
json.dump(rows, f)
|
| 90 |
+
|
| 91 |
+
df = pd.DataFrame(rows)
|
| 92 |
+
|
| 93 |
+
# Debug output
|
| 94 |
+
st.write("DataFrame columns:", list(df.columns))
|
| 95 |
+
st.write("Number of rows:", len(df))
|
| 96 |
+
|
| 97 |
+
return df
|
| 98 |
+
else:
|
| 99 |
+
st.error("No 'rows' found in API response")
|
| 100 |
+
st.write("API Response:", data)
|
| 101 |
+
|
| 102 |
+
# Try loading example data
|
| 103 |
+
example_file = "example_data.json"
|
| 104 |
+
if os.path.exists(example_file):
|
| 105 |
+
st.info("Loading example data...")
|
| 106 |
+
with open(example_file, 'r', encoding='utf-8') as f:
|
| 107 |
+
example_data = json.load(f)
|
| 108 |
+
return pd.DataFrame(example_data)
|
| 109 |
+
|
| 110 |
+
return None
|
| 111 |
+
else:
|
| 112 |
+
st.error(f"API request failed with status code: {response.status_code}")
|
| 113 |
+
if response.status_code == 404:
|
| 114 |
+
st.error("Dataset not found - check the dataset name and configuration")
|
| 115 |
+
try:
|
| 116 |
+
error_details = response.json()
|
| 117 |
+
st.write("Error details:", error_details)
|
| 118 |
+
except:
|
| 119 |
+
st.write("Raw response:", response.text)
|
| 120 |
+
return None
|
| 121 |
+
|
| 122 |
+
except Exception as e:
|
| 123 |
+
st.error(f"Error fetching dataset: {str(e)}")
|
| 124 |
+
import traceback
|
| 125 |
+
st.write("Traceback:", traceback.format_exc())
|
| 126 |
return None
|
| 127 |
+
|
| 128 |
def load_dataset(self):
|
|
|
|
| 129 |
try:
|
|
|
|
| 130 |
self.dataset = self.fetch_dataset_rows()
|
|
|
|
| 131 |
if self.dataset is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
self.prepare_features()
|
| 133 |
else:
|
| 134 |
self.create_dummy_data()
|
|
|
|
| 135 |
except Exception as e:
|
| 136 |
st.error(f"Error loading dataset: {e}")
|
| 137 |
self.create_dummy_data()
|
| 138 |
|
| 139 |
def prepare_features(self):
|
|
|
|
|
|
|
| 140 |
try:
|
| 141 |
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
| 142 |
for e in self.dataset.video_embed])
|
|
|
|
| 144 |
for e in self.dataset.description_embed])
|
| 145 |
except Exception as e:
|
| 146 |
st.error(f"Error preparing features: {e}")
|
|
|
|
| 147 |
num_rows = len(self.dataset)
|
| 148 |
self.video_embeds = np.random.randn(num_rows, 384)
|
| 149 |
self.text_embeds = np.random.randn(num_rows, 384)
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
def search(self, query, top_k=5):
|
|
|
|
| 152 |
query_embedding = self.text_model.encode([query])[0]
|
| 153 |
|
|
|
|
| 154 |
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
|
| 155 |
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
|
| 156 |
|
|
|
|
| 157 |
combined_sims = 0.5 * video_sims + 0.5 * text_sims
|
|
|
|
|
|
|
| 158 |
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
|
| 159 |
|
| 160 |
results = []
|
|
|
|
| 168 |
'relevance_score': float(combined_sims[idx]),
|
| 169 |
'views': self.dataset.iloc[idx]['views']
|
| 170 |
})
|
|
|
|
| 171 |
return results
|
| 172 |
|
| 173 |
+
def perform_arxiv_search(query, vocal_summary=True, extended_refs=False):
|
| 174 |
+
"""Perform Arxiv search with audio summaries"""
|
| 175 |
+
try:
|
| 176 |
+
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 177 |
+
refs = client.predict(query, 20, "Semantic Search",
|
| 178 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 179 |
+
api_name="/update_with_rag_md")[0]
|
| 180 |
+
response = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 181 |
+
True, api_name="/ask_llm")
|
| 182 |
+
|
| 183 |
+
result = f"### π {query}\n\n{response}\n\n{refs}"
|
| 184 |
+
st.markdown(result)
|
| 185 |
+
|
| 186 |
+
if vocal_summary:
|
| 187 |
+
audio_file = asyncio.run(generate_speech(response[:500]))
|
| 188 |
+
if audio_file:
|
| 189 |
+
st.audio(audio_file)
|
| 190 |
+
os.remove(audio_file)
|
| 191 |
+
|
| 192 |
+
return result
|
| 193 |
+
except Exception as e:
|
| 194 |
+
st.error(f"Error in Arxiv search: {e}")
|
| 195 |
+
return None
|
| 196 |
+
|
| 197 |
async def generate_speech(text, voice="en-US-AriaNeural"):
|
| 198 |
"""Generate speech using Edge TTS"""
|
| 199 |
if not text.strip():
|
| 200 |
return None
|
| 201 |
|
| 202 |
+
try:
|
| 203 |
+
communicate = edge_tts.Communicate(text, voice)
|
| 204 |
+
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
| 205 |
+
await communicate.save(audio_file)
|
| 206 |
+
return audio_file
|
| 207 |
+
except Exception as e:
|
| 208 |
+
st.error(f"Error generating speech: {e}")
|
| 209 |
+
return None
|
| 210 |
+
|
| 211 |
+
def process_audio_input(audio_bytes):
|
| 212 |
+
"""Process audio input from recorder"""
|
| 213 |
+
if audio_bytes:
|
| 214 |
+
# Save temporary file
|
| 215 |
+
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
|
| 216 |
+
with open(audio_path, "wb") as f:
|
| 217 |
+
f.write(audio_bytes)
|
| 218 |
+
|
| 219 |
+
# Here you would typically use a speech-to-text service
|
| 220 |
+
# For now, we'll just acknowledge the recording
|
| 221 |
+
st.success("Audio recorded successfully!")
|
| 222 |
+
|
| 223 |
+
# Cleanup
|
| 224 |
+
if os.path.exists(audio_path):
|
| 225 |
+
os.remove(audio_path)
|
| 226 |
+
|
| 227 |
+
return True
|
| 228 |
+
return False
|
| 229 |
|
| 230 |
def main():
|
| 231 |
+
st.title("π₯ Video Search & Research Assistant")
|
| 232 |
|
| 233 |
+
# Initialize search
|
| 234 |
search = VideoSearch()
|
| 235 |
|
| 236 |
+
# Create main tabs
|
| 237 |
+
tab1, tab2, tab3 = st.tabs(["π Video Search", "ποΈ Voice & Audio", "π Arxiv Research"])
|
| 238 |
|
| 239 |
with tab1:
|
| 240 |
+
st.subheader("Search Video Dataset")
|
| 241 |
|
| 242 |
# Text search
|
| 243 |
query = st.text_input("Enter your search query:")
|
|
|
|
| 277 |
audio_file = asyncio.run(generate_speech(summary))
|
| 278 |
if audio_file:
|
| 279 |
st.audio(audio_file)
|
| 280 |
+
os.remove(audio_file)
|
|
|
|
|
|
|
| 281 |
|
| 282 |
with tab2:
|
| 283 |
+
st.subheader("Voice Input & Audio Recording")
|
| 284 |
|
| 285 |
+
col1, col2 = st.columns(2)
|
| 286 |
+
with col1:
|
| 287 |
+
st.write("ποΈ Speech Recognition")
|
| 288 |
+
voice_input = speech_component()
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
+
if voice_input and voice_input != st.session_state['last_voice_input']:
|
| 291 |
+
st.session_state['last_voice_input'] = voice_input
|
| 292 |
+
st.markdown("**Transcribed Text:**")
|
| 293 |
+
st.write(voice_input)
|
| 294 |
+
|
| 295 |
+
if st.button("π Search Videos"):
|
| 296 |
+
results = search.search(voice_input, num_results)
|
| 297 |
+
for i, result in enumerate(results, 1):
|
| 298 |
+
with st.expander(f"Result {i}", expanded=i==1):
|
| 299 |
+
st.write(result['description'])
|
| 300 |
+
if result['youtube_id']:
|
| 301 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
| 302 |
+
|
| 303 |
+
with col2:
|
| 304 |
+
st.write("π΅ Audio Recorder")
|
| 305 |
+
audio_bytes = audio_recorder()
|
| 306 |
+
if audio_bytes:
|
| 307 |
+
process_audio_input(audio_bytes)
|
| 308 |
|
| 309 |
with tab3:
|
| 310 |
+
st.subheader("Arxiv Research")
|
| 311 |
+
arxiv_query = st.text_input("π Research Query:")
|
| 312 |
|
| 313 |
+
col1, col2 = st.columns(2)
|
| 314 |
+
with col1:
|
| 315 |
+
vocal_summary = st.checkbox("Generate Audio Summary", value=True)
|
| 316 |
+
with col2:
|
| 317 |
+
extended_refs = st.checkbox("Include Extended References", value=False)
|
| 318 |
|
| 319 |
+
if st.button("π Search Arxiv") and arxiv_query:
|
| 320 |
+
perform_arxiv_search(arxiv_query, vocal_summary, extended_refs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
+
# Sidebar for history and settings
|
| 323 |
with st.sidebar:
|
| 324 |
+
st.subheader("βοΈ Settings & History")
|
|
|
|
|
|
|
| 325 |
|
| 326 |
+
if st.button("ποΈ Clear History"):
|
| 327 |
+
st.session_state['search_history'] = []
|
| 328 |
+
st.experimental_rerun()
|
| 329 |
+
|
| 330 |
+
st.markdown("### Recent Searches")
|
| 331 |
+
for entry in reversed(st.session_state['search_history'][-5:]):
|
| 332 |
+
st.markdown(f"**{entry['timestamp']}**: {entry['query']}")
|
| 333 |
+
|
| 334 |
+
st.markdown("### Voice Settings")
|
| 335 |
st.selectbox("TTS Voice:",
|
| 336 |
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
|
| 337 |
key="tts_voice")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
if __name__ == "__main__":
|
| 340 |
main()
|