Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Define the states and their populations and health concerns
|
6 |
+
states = {
|
7 |
+
'Minnesota': {
|
8 |
+
'population': 5700000,
|
9 |
+
'health_concerns': ['obesity', 'diabetes', 'heart disease']
|
10 |
+
},
|
11 |
+
'Wisconsin': {
|
12 |
+
'population': 5850000,
|
13 |
+
'health_concerns': ['cancer', 'alcoholism', 'depression']
|
14 |
+
},
|
15 |
+
'Texas': {
|
16 |
+
'population': 29000000,
|
17 |
+
'health_concerns': ['obesity', 'diabetes', 'heart disease']
|
18 |
+
},
|
19 |
+
'Florida': {
|
20 |
+
'population': 21500000,
|
21 |
+
'health_concerns': ['cancer', 'alcoholism', 'depression']
|
22 |
+
},
|
23 |
+
'California': {
|
24 |
+
'population': 39500000,
|
25 |
+
'health_concerns': ['obesity', 'diabetes', 'heart disease']
|
26 |
+
},
|
27 |
+
'New York': {
|
28 |
+
'population': 19500000,
|
29 |
+
'health_concerns': ['cancer', 'alcoholism', 'depression']
|
30 |
+
}
|
31 |
+
}
|
32 |
+
|
33 |
+
# Augment the data by adding random noise and additional columns
|
34 |
+
for state in states:
|
35 |
+
states[state]['population'] += int(np.random.normal(0, 500000))
|
36 |
+
states[state]['climate'] = np.random.choice(['cold', 'moderate', 'hot'])
|
37 |
+
states[state]['geography'] = np.random.choice(['coastal', 'inland', 'mountainous'])
|
38 |
+
states[state]['economy'] = np.random.choice(['agriculture', 'manufacturing', 'services'])
|
39 |
+
|
40 |
+
# Create a pandas dataframe from the augmented data
|
41 |
+
df = pd.DataFrame.from_dict(states, orient='index')
|
42 |
+
df = df[['population', 'climate', 'geography', 'economy', 'health_concerns']]
|
43 |
+
|
44 |
+
# Define the top 3 health concerns by state
|
45 |
+
top_health_concerns = {
|
46 |
+
'Minnesota': ['obesity', 'diabetes', 'heart disease'],
|
47 |
+
'Wisconsin': ['cancer', 'alcoholism', 'depression'],
|
48 |
+
'Texas': ['obesity', 'diabetes', 'heart disease'],
|
49 |
+
'Florida': ['cancer', 'alcoholism', 'depression'],
|
50 |
+
'California': ['obesity', 'diabetes', 'heart disease'],
|
51 |
+
'New York': ['cancer', 'alcoholism', 'depression']
|
52 |
+
}
|
53 |
+
|
54 |
+
# Define the statistics for each health concern and cite references
|
55 |
+
statistics = {
|
56 |
+
'obesity': {
|
57 |
+
'prevalence': '32.4%',
|
58 |
+
'source': 'https://www.cdc.gov/obesity/data/prevalence-maps.html'
|
59 |
+
},
|
60 |
+
'diabetes': {
|
61 |
+
'prevalence': '10.7%',
|
62 |
+
'source': 'https://www.cdc.gov/diabetes/data/statistics-report/index.html'
|
63 |
+
},
|
64 |
+
'heart disease': {
|
65 |
+
'prevalence': '12.1%',
|
66 |
+
'source': 'https://www.cdc.gov/heartdisease/facts.htm'
|
67 |
+
},
|
68 |
+
'cancer': {
|
69 |
+
'prevalence': '38.4%',
|
70 |
+
'source': 'https://www.cdc.gov/cancer/dcpc/data/types.htm'
|
71 |
+
},
|
72 |
+
'alcoholism': {
|
73 |
+
'prevalence': '14.5%',
|
74 |
+
'source': 'https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/alcohol-facts-and-statistics'
|
75 |
+
},
|
76 |
+
'depression': {
|
77 |
+
'prevalence': '7.6%',
|
78 |
+
'source': 'https://www.nimh.nih.gov/health/statistics/major-depression.shtml'
|
79 |
+
}
|
80 |
+
}
|
81 |
+
|
82 |
+
# Define the streamlit app
|
83 |
+
def app():
|
84 |
+
st.title('Data Augmentation Example')
|
85 |
+
st.write('This app demonstrates data augmentation by adding random noise and additional columns to a short python dictionary list of the states.')
|
86 |
+
|
87 |
+
# Display the augmented data
|
88 |
+
st.header('Augmented Data')
|
89 |
+
st.write(df)
|
90 |
+
|
91 |
+
# Display the top 3 health concerns by state and their statistics
|
92 |
+
st.header('Top 3 Health Concerns by State')
|
93 |
+
for state in top_health_concerns:
|
94 |
+
st.subheader(state)
|
95 |
+
for health_concern in top_health_concerns[state]:
|
96 |
+
st.write(health_concern)
|
97 |
+
st.write('Prevalence:', statistics[health_concern]['prevalence'])
|
98 |
+
st.write('Source:', statistics[health_concern]['source'])
|
99 |
+
st.write('---')
|
100 |
+
Run the streamlit app
|
101 |
+
if name == 'main':
|
102 |
+
app()
|