awacke1's picture
Update app.py
4bccfbe
import streamlit as st
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime
from base64 import b64encode
EMOJI_LIST = {4: "πŸŽ‚", 6: "πŸ€", 8: "πŸ„", 10: "🍁", 12: "πŸ‚", 20: "πŸƒ", 50: "πŸ’", 100: "🌟"}
DICE_TYPES = [4, 6, 8, 10, 12, 20, 50, 100]
DEFAULT_ROLLS = 3
def roll_dice(num_rolls, dice_type):
rolls = np.random.randint(1, dice_type + 1, size=num_rolls)
return rolls
def plot_tokens(health_tokens, coin_tokens):
fig = go.Figure()
fig.add_trace(go.Scatter(x=list(range(1, len(health_tokens) + 1)), y=health_tokens, name="πŸ’– Health"))
fig.add_trace(go.Scatter(x=list(range(1, len(coin_tokens) + 1)), y=coin_tokens, name="πŸ’° Coins"))
fig.update_layout(title="Token Accumulation", xaxis_title="Rolls", yaxis_title="Tokens")
st.plotly_chart(fig)
st.title("🎲 Dice Rolling Game")
username = st.text_input("πŸ‘€ Enter your username:")
num_rolls = st.slider("πŸ”’ Choose the number of rolls:", 1, 100, DEFAULT_ROLLS)
history = {"health_tokens": [0], "coin_tokens": [0]}
for dice_type in DICE_TYPES:
rolls = roll_dice(num_rolls, dice_type)
highest_rolls = sum(roll == dice_type for roll in rolls)
coin_tokens_added = 0
dice_results = [f"{EMOJI_LIST[dice_type]} {roll}" for roll in rolls]
st.write(f"🎲 Results for {dice_type}-sided dice: {' | '.join(dice_results)}")
for roll in rolls:
if roll == dice_type:
st.write(f"πŸŽ‰ Congratulations! You rolled the {EMOJI_LIST[dice_type]} highest value! πŸ’° Adding 3 coins.")
coin_tokens_added += 3
if roll == max(rolls):
st.write(f"πŸŽ‰ Congratulations! You rolled the {EMOJI_LIST[dice_type]} maximum value! πŸ’– Adding 10 health tokens.")
if dice_type == 100:
history["health_tokens"].append(history["health_tokens"][-1] + 10)
history[f"{dice_type}-sided dice high rolls"] = highest_rolls
history["roll_history"] = {**history.get("roll_history", {}), dice_type: rolls}
history["coin_tokens"].append(history["coin_tokens"][-1] + coin_tokens_added)
st.write("πŸ’°πŸ’– Token Accumulation:")
plot_tokens(history["health_tokens"], history["coin_tokens"])
df = pd.concat([pd.DataFrame(history["roll_history"]), pd.DataFrame(history["health_tokens"], columns=["Health Tokens"]), pd.DataFrame(history["coin_tokens"], columns=["Coin Tokens"])], axis=1)
timestamp = datetime.now().strftime("%m-%d-%Y-%H-%M-%S")
filename = f"{username}_{timestamp}.csv"
df.to_csv(filename, index=False)
st.markdown(f'<a href="data:file/csv;base64,{b64encode(open(filename, "rb").read()).decode()}" download="{filename}">Download CSV File</a>', unsafe_allow_html=True)