import streamlit as st import numpy as np import pandas as pd import plotly.graph_objects as go from datetime import datetime from base64 import b64encode # Define emoji list EMOJI_LIST = {4: "🎂", 6: "🍀", 8: "🍄", 10: "🍁", 12: "🍂", 20: "🍃", 50: "🍒", 100: "🌟"} # Define the dice types and default number of rolls DICE_TYPES = [4, 6, 8, 10, 12, 20, 50, 100] DEFAULT_ROLLS = 3 # Define a function to roll dice def roll_dice(num_rolls, dice_type): rolls = np.random.randint(1, dice_type + 1, size=num_rolls) return rolls # Define a function to plot tokens def plot_tokens(health_tokens, coin_tokens): fig = go.Figure() fig.add_trace(go.Scatter(x=list(range(1, len(health_tokens) + 1)), y=health_tokens, name="Health")) fig.add_trace(go.Scatter(x=list(range(1, len(coin_tokens) + 1)), y=coin_tokens, name="Coins")) fig.update_layout(title="Token Accumulation", xaxis_title="Rolls", yaxis_title="Tokens") st.plotly_chart(fig) # Define the app st.title("Dice Rolling Game") # Get username and number of rolls username = st.text_input("Enter your username:") num_rolls = st.slider("Choose the number of rolls:", 1, 100, DEFAULT_ROLLS) # Roll dice for each type and accumulate high rolls and tokens history = {"health_tokens": [0], "coin_tokens": [0]} for dice_type in DICE_TYPES: rolls = roll_dice(num_rolls, dice_type) highest_rolls = sum(roll == dice_type for roll in rolls) st.write(f"Results for {dice_type}-sided dice:") for roll in rolls: st.write(f"{EMOJI_LIST[dice_type]} {roll}") if roll == dice_type: st.write("Congratulations! You rolled the highest value!") if dice_type == 100: st.write("Adding 10 coins for rolling over 90 on 100-sided dice.") history["coin_tokens"].append(history["coin_tokens"][-1] + 10) history[f"{dice_type}-sided dice high rolls"] = highest_rolls history["roll_history"] = {**history.get("roll_history", {}), dice_type: rolls} history["health_tokens"].append(history.get("20-sided dice high rolls", 0)) history["coin_tokens"].append(history.get("100-sided dice high rolls", 0)) # Plot token accumulation st.write("Token Accumulation:") plot_tokens(history["health_tokens"], history["coin_tokens"]) # Create DataFrame and save to CSV file df = pd.concat([pd.DataFrame(history["roll_history"]), pd.DataFrame(history["health_tokens"], columns=["Health Tokens"]), pd.DataFrame(history["coin_tokens"], columns=["Coin Tokens"])], axis=1) timestamp = datetime.now().strftime("%m-%d-%Y-%H-%M-%S") filename = f"{username}_{timestamp}.csv" df.to_csv(filename, index=False) # Show download link for CSV file st.markdown(f'Download CSV File', unsafe_allow_html=True)