# Code Destiny and Density is equal to one hundred. st.Markdown("TODO: A code density slider bar shows and adjusts the size of lines. Any way to compress the lines yet make it readable as optimal list of sets will do. Match language from good math books.') import streamlit as st import numpy as np import pandas as pd import plotly.express as px st.title('Random Dice Game') dice_types = [{'name': 'Six-sided Dice', 'sides': 6, 'emoji': '🎲'}, {'name': 'Twenty-sided Dice', 'sides': 20, 'emoji': '🎯'}, {'name': 'Thirty-sided Dice', 'sides': 30, 'emoji': '🎯'}, {'name': 'One Hundred-sided Dice', 'sides': 100, 'emoji': '🎲'}] if 'name' not in st.session_state: st.session_state.name = '' if 'dice_roll_history' not in st.session_state: st.session_state.dice_roll_history = pd.DataFrame() dice_type = st.selectbox('Choose a type of dice', dice_types, format_func=lambda d: f"{d['name']} {d['emoji']}") num_rolls = st.slider('How many times do you want to roll the dice?', 1, 1000000, 1000) rolls = np.random.randint(1, dice_type['sides'] + 1, num_rolls, dtype=np.uint64) roll_counts = pd.Series(rolls).value_counts().sort_index() fig = px.sunburst(names=[f'Roll {i}' for i in roll_counts.index], parents=['Dice Rolls'] * dice_type['sides'], values=roll_counts.values, color=[f'Roll {i}' for i in roll_counts.index], color_discrete_sequence=px.colors.qualitative.Dark24, maxdepth=2) fig.update_layout(title='Dice Roll Distribution', margin=dict(l=20, r=20, t=40, b=20), width=800, height=600) show_labels = st.checkbox('Show Labels', value=True) if not show_labels: fig.update_traces(textinfo='none') fig.show() bonus_match = False for dice in dice_types: if rolls[0] == dice['sides']: bonus_match = True bonus_dice_type = dice['name'] bonus_dice_emoji = dice['emoji'] break dice_roll_history = st.session_state.dice_roll_history new_roll_data = pd.DataFrame({'Roll': rolls, 'Count': np.ones(num_rolls, dtype=np.uint64), 'DiceNumberOfSides': [dice_type['sides']] * num_rolls, 'DiceRollerName': [st.session_state.name] * num_rolls}) if bonus_match: new_roll_data['BonusMatchToDiceName'] = [bonus_dice_type] * num_rolls new_roll_data['BonusMatchToDiceEmoji'] = [bonus_dice_emoji] * num_rolls dice_roll_history = dice_roll_history.append(new_roll_data, ignore_index=True) st.session_state.dice_roll_history = dice_roll_history if st.button('Download Results'): filename = f'dice_roll_history_{st.session_state.name}.csv' st.download_button(label='Download CSV', data=dice_roll_history.to_csv(index=False), file_name=filename, mime='text/csv') if st.session_state.dice_roll_history.shape[0] > 0: st.markdown('### Dice Roll History') st.dataframe(st.session_state.dice_roll_history)