Update app.py
Browse files
app.py
CHANGED
@@ -420,10 +420,12 @@ if st.button('Analyze'):
|
|
420 |
# Perform text preprocessing
|
421 |
vectorizer = CountVectorizer(stop_words='english')
|
422 |
X = vectorizer.fit_transform([text_input])
|
|
|
|
|
423 |
|
424 |
# Perform dictionary learning
|
425 |
dl = DictionaryLearning(n_components=n_components, transform_algorithm='lasso_lars', random_state=0)
|
426 |
-
X_transformed = dl.fit_transform(
|
427 |
dictionary = dl.components_
|
428 |
|
429 |
# Get the feature names (terms)
|
@@ -461,8 +463,5 @@ if st.button('Analyze'):
|
|
461 |
nx.draw_networkx_labels(G, pos, font_size=8)
|
462 |
ax.axis('off')
|
463 |
st.pyplot(fig)
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
|
468 |
|
|
|
420 |
# Perform text preprocessing
|
421 |
vectorizer = CountVectorizer(stop_words='english')
|
422 |
X = vectorizer.fit_transform([text_input])
|
423 |
+
# Convert sparse matrix to dense numpy array
|
424 |
+
X_dense = X.toarray()
|
425 |
|
426 |
# Perform dictionary learning
|
427 |
dl = DictionaryLearning(n_components=n_components, transform_algorithm='lasso_lars', random_state=0)
|
428 |
+
X_transformed = dl.fit_transform(X_dense)
|
429 |
dictionary = dl.components_
|
430 |
|
431 |
# Get the feature names (terms)
|
|
|
463 |
nx.draw_networkx_labels(G, pos, font_size=8)
|
464 |
ax.axis('off')
|
465 |
st.pyplot(fig)
|
|
|
|
|
|
|
466 |
|
467 |
|