File size: 3,472 Bytes
dc0e4d1
 
 
 
 
4071758
 
 
dc0e4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4071758
 
dc0e4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import streamlit as st


st.markdown("""


# 2. Streamlit Docker Example

https://huggingface.co/spaces/DockerTemplates/streamlit-docker-example/tree/main

# Dockerfile:
FROM python:3.8.9

WORKDIR /app

COPY ./requirements.txt /app/requirements.txt
COPY ./packages.txt /app/packages.txt

RUN apt-get update && xargs -r -a /app/packages.txt apt-get install -y && rm -rf /var/lib/apt/lists/*
RUN pip3 install --no-cache-dir -r /app/requirements.txt

# User
RUN useradd -m -u 1000 user
USER user
ENV HOME /home/user
ENV PATH $HOME/.local/bin:$PATH

WORKDIR $HOME
RUN mkdir app
WORKDIR $HOME/app
COPY . $HOME/app

EXPOSE 8501
CMD streamlit run app.py

# app.py:

import streamlit as st
import pandas as pd
import numpy as np

st.title('Uber pickups in NYC')

DATE_COLUMN = 'date/time'
DATA_URL = ('https://s3-us-west-2.amazonaws.com/'
            'streamlit-demo-data/uber-raw-data-sep14.csv.gz')

@st.cache
def load_data(nrows):
    data = pd.read_csv(DATA_URL, nrows=nrows)
    lowercase = lambda x: str(x).lower()
    data.rename(lowercase, axis='columns', inplace=True)
    data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
    return data

data_load_state = st.text('Loading data...')
data = load_data(10000)
data_load_state.text("Done! (using st.cache)")

if st.checkbox('Show raw data'):
    st.subheader('Raw data')
    st.write(data)

st.subheader('Number of pickups by hour')
hist_values = np.histogram(data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0]
st.bar_chart(hist_values)

# Some number in the range 0-23
hour_to_filter = st.slider('hour', 0, 23, 17)
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]

st.subheader('Map of all pickups at %s:00' % hour_to_filter)
st.map(filtered_data)

# requirements.txt
streamlit
numpy
pandas



# 2. Gradio Docker Example

https://huggingface.co/spaces/sayakpaul/demo-docker-gradio/blob/main/Dockerfile

# Dockerfile:

# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
# you will also find guides on how best to write your Dockerfile

FROM python:3.9

WORKDIR /code

COPY ./requirements.txt /code/requirements.txt

RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt

# Set up a new user named "user" with user ID 1000
RUN useradd -m -u 1000 user
# Switch to the "user" user
USER user
# Set home to the user's home directory
ENV HOME=/home/user \
    PATH=/home/user/.local/bin:$PATH

# Set the working directory to the user's home directory
WORKDIR $HOME/app

# Copy the current directory contents into the container at $HOME/app setting the owner to the user
COPY --chown=user . $HOME/app

CMD ["python", "main.py"]


# main.py

import gradio as gr
import torch
import requests
from torchvision import transforms

model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval()
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")


def predict(inp):
    inp = transforms.ToTensor()(inp).unsqueeze(0)
    with torch.no_grad():
        prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
        confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
    return confidences


def run():
    demo = gr.Interface(
        fn=predict,
        inputs=gr.inputs.Image(type="pil"),
        outputs=gr.outputs.Label(num_top_classes=3),
    )

    demo.launch(server_name="0.0.0.0", server_port=7860)


if __name__ == "__main__":
    run()

# requirements.txt

gradio
torch
torchvision
requests

""")