File size: 3,217 Bytes
bdf68d5
 
 
 
7791160
 
 
bdf68d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a37a91
 
 
 
7791160
7a37a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdf68d5
 
 
7a37a91
 
 
 
bdf68d5
 
 
 
 
 
 
7a37a91
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np

# Define golden_ratio as a global constant
golden_ratio = (1 + np.sqrt(5)) / 2

def generate_colored_circle_template(num_circles):
    fig, ax = plt.subplots(figsize=(6, 6))
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.axis('off')

    for _ in range(num_circles):
        radius = np.random.uniform(0.05, 0.15)
        center = (np.random.uniform(radius, 1-radius), np.random.uniform(radius, 1-radius))
        color = np.random.rand(3,)
        circle = plt.Circle(center, radius, color=color, alpha=0.8)
        ax.add_artist(circle)
    return fig

def generate_symmetrical_circle_layout(num_layers):
    fig, ax = plt.subplots(figsize=(6, 6))
    ax.set_aspect('equal')
    ax.axis('off')
    
    center = (0.5, 0.5)
    for i in range(num_layers):
        radius = (i + 1) * 0.1
        for j in range(6):
            angle = np.pi / 3 * j
            x = center[0] + radius * np.cos(angle)
            y = center[1] + radius * np.sin(angle)
            circle = plt.Circle((x, y), radius=0.05, color=np.random.rand(3,), fill=True)
            ax.add_artist(circle)
    return fig

def generate_fibonacci_spiral_layout(num_points):
    fig, ax = plt.subplots(figsize=(6, 6))
    ax.axis('off')
    radius = 0.05
    for i in range(num_points):
        angle = i * 2 * np.pi / golden_ratio
        distance = np.sqrt(i) * radius
        x = 0.5 + distance * np.cos(angle)
        y = 0.5 + distance * np.sin(angle)
        circle = plt.Circle((x, y), radius, color=np.random.rand(3,), fill=True)
        ax.add_artist(circle)
    ax.set_aspect('equal')
    return fig

def is_prime(n):
    if n <= 1:
        return False
    for i in range(2, int(n**0.5) + 1):
        if n % i == 0:
            return False
    return True

def generate_prime_number_spiral(num_points):
    fig, ax = plt.subplots(figsize=(6, 6))
    ax.axis('off')
    radius = 0.05
    for i in range(1, num_points + 1):
        if is_prime(i):
            angle = i * 2 * np.pi / golden_ratio
            distance = np.sqrt(i) * radius
            x = 0.5 + distance * np.cos(angle)
            y = 0.5 + distance * np.sin(angle)
            circle = plt.Circle((x, y), radius, color=np.random.rand(3,), fill=True)
            ax.add_artist(circle)
    ax.set_aspect('equal')
    return fig

# Streamlit UI
st.title("Circle Packings Visualization")

mode = st.radio(
    "Choose a visualization mode:",
    ("Random Circle Packings", "Symmetrical Circle Layouts", "Fibonacci Spiral Layout", "Prime Number Spiral")
)

if mode == "Random Circle Packings":
    num_circles = st.slider("Number of Circles", 5, 50, 10)
    fig = generate_colored_circle_template(num_circles)
elif mode == "Symmetrical Circle Layouts":
    num_layers = st.slider("Number of Symmetrical Layers", 1, 5, 3)
    fig = generate_symmetrical_circle_layout(num_layers)
elif mode == "Fibonacci Spiral Layout":
    num_points = st.slider("Number of Points", 10, 100, 30)
    fig = generate_fibonacci_spiral_layout(num_points)
elif mode == "Prime Number Spiral":
    num_points = st.slider("Number of Points", 10, 1000, 200)
    fig = generate_prime_number_spiral(num_points)

st.pyplot(fig)